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• Missing satellites: persists to today, at some level. May be 
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Standard Model of Structure Formation

• Cusp-core problem: persists in isolated galaxies. Supernova 
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“unlucky” Milky Way less likely explanation). May be explained in 
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orbiting for a long time and MW mass is low. 
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Suggest less DM in the central regions of halos 
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The SIDM model

ΛCDM   + 
�

m
6= 0

Spergerl & Steinhardt  2000

�

m
= 0.1� 100 cm2/g

Interesting phenomenology if

σ/m =1 cm2/g = 2 barn/Gev = neutron-proton scattering
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Is this a crazy idea? 
Self-Interactions are a generic consequence of 

many models beyond the Standard Model

Just add a new force at the ~sub-Gev scale
m� = O(Mev)

A Light Force Carrier

 

XX

X X

ɸ
• A light force mediator is necessary

in the perturbative and small velocity limit 

Go beyond usual WIMPs

In many DM models that are well-motivated for other 
reasons, there are light mediators and DM candidates can be 
self-interacting

SIDM predicts a scale much below the weak scale ~100 GeV 
~100 GeV______

______
~sub-GeV

If your prejudice is that new physics 
can only be at O(TeV), then this 

large cross-sections will seem crazy
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Is this a crazy idea? 

Examples:
Asymmetric DM - Nussinov (1985);Kaplan (1992);Kaplan,Luty, Zurek (2009); Shelton, Zurek (2011); 

Buckley, Randall (2011); Morrissey, Sigurdson, Tulin (2010); Buckley (2011); Lin, Hai-Bo Yu, Zurek (2011). 

Hidden Charge DM - Feng, Tu, Hai-Bo Yu (2008); Ackerman, Buckley, Carroll, Kamionkowski 
(2008);Feng, Kaplinghat, Tu, HBY (2009).  

Atomic DM - Foot (2003); Kaplan, Krnjaic, Rehermann, Wells (2009);Feng, Kaplinghat, Tu, Hai-Bo Yu 
(2009);Cline, Liu, Wei Xue (2012);Francis-Yan Cyr-Racine,Kris Sigurdson (2013). 

Double Disk DM - Fan, Katz, Randall, Reece (2013); McCullough,Randall (2013)

Self-Interactions are a generic consequence of 
many models beyond the Standard Model
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Phenomenology of DM Self-Interactions

� � �
� ⇥
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Spergerl & Steinhardt  2000

Elastic - Velocity Independent - Isotropic
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Phenomenology of DM Self-Interactions

• In merging systems the drag that the DM experiences would be 
different to that of the collisionless galaxies, resulting in an 
offset between the surface mass centroids and the galaxy 
centroids + lower M/L ratios

� � �
� ⇥

m

⇥
vrel

�/H0 � 1 Where                        (central regions of DM halos)

Spergerl & Steinhardt  2000

Elastic - Velocity Independent - Isotropic

• The energy transfer results in isothermal low density cores

• The isotropic scattering produces near-spherical cores

• The hot dense medium results in substructure evaporation
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ΛCDM
 σ/m = 1 cm2 /g
ΛSIDM

50 Mpc/h

Results from cosmological simulations - Halo densities, 
shapes & substructure

Identical large-scale structure
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ΛCDM ΛSIDM
 σ/m = 1 cm2 /g

200 Kpc/h

Lower central phase-space density in SIDM halos

Results from cosmological simulations - Halo densities, 
shapes & substructure
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Figure 4. Density profiles for our six example halos from our SIDM1 (blue stars) and SIDM0.1 (green triangles) simulations and their CDM counterparts.
With self-interactions turned on, halo central densities decrease, forming cored density profiles. Solid lines are for the best NFW (black) and Burkert (blue) fits,
with the points representing the density at each radial bin found by AHF. The arrow indicates the location of the Burkert core radius rb. rs is the NFW scale
radius of the corresponding CDM halo density profile (black solid line). Burkert profiles provide a reasonable fit to our SIDM1 halos only because rb ⇥ rs
for �/m = 1 cm2/g, so a cored profile with a single scale radius works. As discussed in §7 this is not the case for �/m = 0.1 cm2/g and thus Burkert
profiles are not a good fit to our SIDM0.1 halos.

fully quantify the expected differences between CDM and SIDM
for ⇥/m ⇥ 0.1 cm2/g.

For the SIDM1 cases we can quantify the halo cores by fitting
them to Burkert (1995) profiles

�B(r) =
�br

3
b

(r + rb)(r2 + r2b)
. (12)

These Burkert fits are shown as blue dashed lines. They are good
fits for radii within r ⇥ 2 � 3 rs, but the quality of the fits gets
worse at large radii. The blue arrows in each panel show the value
of the best-fit Burkert core radius for the SIDM1 halos. Note that
the values are remarkably stable in proportion to the CDM rs value
at rb ⇤ 0.7 rs.

As explained in §7, the fact that the SIDM1 profiles are rea-
sonably well characterized by a single scale-radius Burkert profile
may be a lucky accident, only valid for cross sections near 1 cm2/g.
It just so happens that for this cross section the radius where dark
matter particles experience significant scattering sets in at r ⇥ rs
(see Figure 7 and related discussion). For a smaller cross section
(with a correspondingly smaller core) a multiple parameter fit may
be necessary. Given the beginnings of very small cores we are see-
ing in the SIDM0.1 runs, it would appear that we would need one
scale radius to define an rs bend and a second scale radii to define
a distinct core.

Another qualitative fact worth noting is that the density pro-
files of the SIDM1 halos overshoot the CDM density profiles near

the Burkert core radius (not as much as the Burkert fits do, but
the difference in the data points is noticeable). This is due to the
fact that as particles scatter in the center, those that gain energy
are pushed to larger apocenter orbits. This observation invites us
to consider a toy model for SIDM halos where the effect of SIDM
is confined to a region (smaller than a radius of about rb) wherein
particles redistribute energy and move towards a constant density
isothermal core. We will develop this model further to explain the
scaling relations between core size and halo mass in Sec. 6.

The circular velocity curves for the same set of halos discussed
above are shown in Figure 5. The SIDM rotation curves rise more
steeply and have a lower normalization than for CDM within the
NFW scale radius rs. This brings to mind the rotation curves ob-
served for low surface brightness galaxies and we will explore this
connection later. Note though that the peak circular velocity Vmax

actually is slightly higher for the SIDM1 case because of the mass
rearrangement (evident in the density profiles in Figure 4) briefly
discussed in the last paragraph. At radii well outside the core ra-
dius, the rotation curves of the CDM and SIDM1 halos converge,
though this convergence occurs beyond the plot axes > rs for most
of the halos shown.

An appreciation of why the density profiles of SIDM halos
become cored can be gained from studying their velocity disper-
sion profiles compared to their CDM counterparts, as illustrated in
Figure 6. Here vrms is defined as the root-mean-square speed of all

c� 0000 RAS, MNRAS 000, 000–000

D
en

si
ty

8 Rocha et al.

Figure 4. Density profiles for our six example halos from our SIDM1 (blue stars) and SIDM0.1 (green triangles) simulations and their CDM counterparts.
With self-interactions turned on, halo central densities decrease, forming cored density profiles. Solid lines are for the best NFW (black) and Burkert (blue) fits,
with the points representing the density at each radial bin found by AHF. The arrow indicates the location of the Burkert core radius rb. rs is the NFW scale
radius of the corresponding CDM halo density profile (black solid line). Burkert profiles provide a reasonable fit to our SIDM1 halos only because rb ⇥ rs
for �/m = 1 cm2/g, so a cored profile with a single scale radius works. As discussed in §7 this is not the case for �/m = 0.1 cm2/g and thus Burkert
profiles are not a good fit to our SIDM0.1 halos.

fully quantify the expected differences between CDM and SIDM
for ⇥/m ⇥ 0.1 cm2/g.

For the SIDM1 cases we can quantify the halo cores by fitting
them to Burkert (1995) profiles

�B(r) =
�br

3
b

(r + rb)(r2 + r2b)
. (12)

These Burkert fits are shown as blue dashed lines. They are good
fits for radii within r ⇥ 2 � 3 rs, but the quality of the fits gets
worse at large radii. The blue arrows in each panel show the value
of the best-fit Burkert core radius for the SIDM1 halos. Note that
the values are remarkably stable in proportion to the CDM rs value
at rb ⇤ 0.7 rs.

As explained in §7, the fact that the SIDM1 profiles are rea-
sonably well characterized by a single scale-radius Burkert profile
may be a lucky accident, only valid for cross sections near 1 cm2/g.
It just so happens that for this cross section the radius where dark
matter particles experience significant scattering sets in at r ⇥ rs
(see Figure 7 and related discussion). For a smaller cross section
(with a correspondingly smaller core) a multiple parameter fit may
be necessary. Given the beginnings of very small cores we are see-
ing in the SIDM0.1 runs, it would appear that we would need one
scale radius to define an rs bend and a second scale radii to define
a distinct core.

Another qualitative fact worth noting is that the density pro-
files of the SIDM1 halos overshoot the CDM density profiles near

the Burkert core radius (not as much as the Burkert fits do, but
the difference in the data points is noticeable). This is due to the
fact that as particles scatter in the center, those that gain energy
are pushed to larger apocenter orbits. This observation invites us
to consider a toy model for SIDM halos where the effect of SIDM
is confined to a region (smaller than a radius of about rb) wherein
particles redistribute energy and move towards a constant density
isothermal core. We will develop this model further to explain the
scaling relations between core size and halo mass in Sec. 6.

The circular velocity curves for the same set of halos discussed
above are shown in Figure 5. The SIDM rotation curves rise more
steeply and have a lower normalization than for CDM within the
NFW scale radius rs. This brings to mind the rotation curves ob-
served for low surface brightness galaxies and we will explore this
connection later. Note though that the peak circular velocity Vmax

actually is slightly higher for the SIDM1 case because of the mass
rearrangement (evident in the density profiles in Figure 4) briefly
discussed in the last paragraph. At radii well outside the core ra-
dius, the rotation curves of the CDM and SIDM1 halos converge,
though this convergence occurs beyond the plot axes > rs for most
of the halos shown.

An appreciation of why the density profiles of SIDM halos
become cored can be gained from studying their velocity disper-
sion profiles compared to their CDM counterparts, as illustrated in
Figure 6. Here vrms is defined as the root-mean-square speed of all

c� 0000 RAS, MNRAS 000, 000–000

Radius/rs
0.5 0.5

Radius/rs
0.1 0.1

σ/m = 1 
σ/m = 0.1

Tuesday, September 10, 13



8 Rocha et al.

Figure 4. Density profiles for our six example halos from our SIDM1 (blue stars) and SIDM0.1 (green triangles) simulations and their CDM counterparts.
With self-interactions turned on, halo central densities decrease, forming cored density profiles. Solid lines are for the best NFW (black) and Burkert (blue) fits,
with the points representing the density at each radial bin found by AHF. The arrow indicates the location of the Burkert core radius rb. rs is the NFW scale
radius of the corresponding CDM halo density profile (black solid line). Burkert profiles provide a reasonable fit to our SIDM1 halos only because rb ⇥ rs
for �/m = 1 cm2/g, so a cored profile with a single scale radius works. As discussed in §7 this is not the case for �/m = 0.1 cm2/g and thus Burkert
profiles are not a good fit to our SIDM0.1 halos.

fully quantify the expected differences between CDM and SIDM
for ⇥/m ⇥ 0.1 cm2/g.

For the SIDM1 cases we can quantify the halo cores by fitting
them to Burkert (1995) profiles

�B(r) =
�br

3
b

(r + rb)(r2 + r2b)
. (12)

These Burkert fits are shown as blue dashed lines. They are good
fits for radii within r ⇥ 2 � 3 rs, but the quality of the fits gets
worse at large radii. The blue arrows in each panel show the value
of the best-fit Burkert core radius for the SIDM1 halos. Note that
the values are remarkably stable in proportion to the CDM rs value
at rb ⇤ 0.7 rs.

As explained in §7, the fact that the SIDM1 profiles are rea-
sonably well characterized by a single scale-radius Burkert profile
may be a lucky accident, only valid for cross sections near 1 cm2/g.
It just so happens that for this cross section the radius where dark
matter particles experience significant scattering sets in at r ⇥ rs
(see Figure 7 and related discussion). For a smaller cross section
(with a correspondingly smaller core) a multiple parameter fit may
be necessary. Given the beginnings of very small cores we are see-
ing in the SIDM0.1 runs, it would appear that we would need one
scale radius to define an rs bend and a second scale radii to define
a distinct core.

Another qualitative fact worth noting is that the density pro-
files of the SIDM1 halos overshoot the CDM density profiles near

the Burkert core radius (not as much as the Burkert fits do, but
the difference in the data points is noticeable). This is due to the
fact that as particles scatter in the center, those that gain energy
are pushed to larger apocenter orbits. This observation invites us
to consider a toy model for SIDM halos where the effect of SIDM
is confined to a region (smaller than a radius of about rb) wherein
particles redistribute energy and move towards a constant density
isothermal core. We will develop this model further to explain the
scaling relations between core size and halo mass in Sec. 6.

The circular velocity curves for the same set of halos discussed
above are shown in Figure 5. The SIDM rotation curves rise more
steeply and have a lower normalization than for CDM within the
NFW scale radius rs. This brings to mind the rotation curves ob-
served for low surface brightness galaxies and we will explore this
connection later. Note though that the peak circular velocity Vmax

actually is slightly higher for the SIDM1 case because of the mass
rearrangement (evident in the density profiles in Figure 4) briefly
discussed in the last paragraph. At radii well outside the core ra-
dius, the rotation curves of the CDM and SIDM1 halos converge,
though this convergence occurs beyond the plot axes > rs for most
of the halos shown.

An appreciation of why the density profiles of SIDM halos
become cored can be gained from studying their velocity disper-
sion profiles compared to their CDM counterparts, as illustrated in
Figure 6. Here vrms is defined as the root-mean-square speed of all

c� 0000 RAS, MNRAS 000, 000–000

10 Rocha et al.

Figure 6. Velocity dispersion profiles for our six example halos from our SIDM1 and SIDM0.1 simulations over-plotted with their CDM counterparts. The
velocity dispersion is inflated at small radii and slightly suppressed at large radii. The effects set in at approximately the radius where SIDM particles experience
at least one interaction on average over the lifetime of the halo (see Figure 7).

(2010) for reviews). In fact, one of the most stringent constraints
on the self-interaction cross section comes from analytic subhalo-
evaporation arguments (Gnedin & Ostriker 2001).

Figure 8 demonstrates that the effects of subhalo evaporation
in SIDM are not as strong as previously suggested on analytic
grounds. Here we show the cumulative number of subhalos larger
than a given Vmax for a sample of well-resolved halos in our CDM
(solid), SIDM0.1 (dotted), and and SIDM1 (dashed) simulations.
The associated virial masses for each host halo are shown in the
legend. The left panel presents the Vmax function for all subhalos
within the virial radius of each host and the right panel restricts the
analysis to subhalos within half of the virial radius. We see that gen-
erally the reduction in substructure counts at a fixed Vmax is small
but non-zero and that the effects appear to be stronger at small radii
than large. Similarly, there appears to be slightly more reduction of
substructure in the SIDM cluster halos compared to the galaxy size
systems.

We can understand both trends, 1) the increase in the differ-
ence between the CDM and SIDM Vmax functions as Mvir in-
creases and 2) the increase in the difference as one looks at the
central regions of the halo, using the results from the previous sec-
tion as a guide. The typical probability that particle in an SIDM
subhalo will interact with a particle in the background halo is

P ⇤ ⌃�host(r)(⇥/m)vorb(r)⌥T T, (14)

where vorb(r) is the orbital speed of the subhalo at position r, �host
is the mass density of the host halo, and T is the orbital period.
The typical speed of the subhalo is similar to the rms speed of

the smooth component of the halo, and thus �host(r)(⇥/m)vorb(r)
should be similar to the function we show in Figure 7. At fixed
r/rs we expect P to scale with Vmax as V 3

max/r
2
max (given that

�s ⇧ V 2
max/r

2
max), which is a very mildly increasing function

of Vmax over the range of halo masses we have simulated. Note
though that we expect scatter at fixed halo mass because of the
scatter in the Vmax � rmax relation (Bullock et al. 2001).

While the increase in destruction of subhalos with host halo
mass is not strong, it is clear from the above arguments that subha-
los in the inner parts of the halo (r/rs ⌅ 1) should be destroyed but
the bulk of the subhalos around r/rs ⇥ 1 and beyond should sur-
vive for ⇥/m = 1 cm2/g. This effect is strengthen by the fact that
subhalos in the innermost region of the halo were accreted much
longer ago than subhalos in the outskirts, so they have experienced
many more orbits (Rocha et al. 2011). These arguments explain the
comparisons between the subhalo mass functions plotted in Fig-
ure 8. Our arguments demonstrate that a large fraction of the sub-
halos found in CDM halos (most of which are in the outer parts)
would still survive in SIDM halos for ⇥/m values around or below
1 cm2/g.

Overall in the previous two sections we have seen that the effects
of self-interactions between dark matter particles in cosmological
simulations are primarily in the central regions of dark matter ha-
los, leaving the large scale structure identical to our non-interacting
CDM simulations. Thus we retain the desirable features of CDM
on large scales while revealing different phenomenology near halo
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Figure 4. Density profiles for our six example halos from our SIDM1 (blue stars) and SIDM0.1 (green triangles) simulations and their CDM counterparts.
With self-interactions turned on, halo central densities decrease, forming cored density profiles. Solid lines are for the best NFW (black) and Burkert (blue) fits,
with the points representing the density at each radial bin found by AHF. The arrow indicates the location of the Burkert core radius rb. rs is the NFW scale
radius of the corresponding CDM halo density profile (black solid line). Burkert profiles provide a reasonable fit to our SIDM1 halos only because rb ⇥ rs
for �/m = 1 cm2/g, so a cored profile with a single scale radius works. As discussed in §7 this is not the case for �/m = 0.1 cm2/g and thus Burkert
profiles are not a good fit to our SIDM0.1 halos.

fully quantify the expected differences between CDM and SIDM
for ⇥/m ⇥ 0.1 cm2/g.

For the SIDM1 cases we can quantify the halo cores by fitting
them to Burkert (1995) profiles

�B(r) =
�br

3
b

(r + rb)(r2 + r2b)
. (12)

These Burkert fits are shown as blue dashed lines. They are good
fits for radii within r ⇥ 2 � 3 rs, but the quality of the fits gets
worse at large radii. The blue arrows in each panel show the value
of the best-fit Burkert core radius for the SIDM1 halos. Note that
the values are remarkably stable in proportion to the CDM rs value
at rb ⇤ 0.7 rs.

As explained in §7, the fact that the SIDM1 profiles are rea-
sonably well characterized by a single scale-radius Burkert profile
may be a lucky accident, only valid for cross sections near 1 cm2/g.
It just so happens that for this cross section the radius where dark
matter particles experience significant scattering sets in at r ⇥ rs
(see Figure 7 and related discussion). For a smaller cross section
(with a correspondingly smaller core) a multiple parameter fit may
be necessary. Given the beginnings of very small cores we are see-
ing in the SIDM0.1 runs, it would appear that we would need one
scale radius to define an rs bend and a second scale radii to define
a distinct core.

Another qualitative fact worth noting is that the density pro-
files of the SIDM1 halos overshoot the CDM density profiles near

the Burkert core radius (not as much as the Burkert fits do, but
the difference in the data points is noticeable). This is due to the
fact that as particles scatter in the center, those that gain energy
are pushed to larger apocenter orbits. This observation invites us
to consider a toy model for SIDM halos where the effect of SIDM
is confined to a region (smaller than a radius of about rb) wherein
particles redistribute energy and move towards a constant density
isothermal core. We will develop this model further to explain the
scaling relations between core size and halo mass in Sec. 6.

The circular velocity curves for the same set of halos discussed
above are shown in Figure 5. The SIDM rotation curves rise more
steeply and have a lower normalization than for CDM within the
NFW scale radius rs. This brings to mind the rotation curves ob-
served for low surface brightness galaxies and we will explore this
connection later. Note though that the peak circular velocity Vmax

actually is slightly higher for the SIDM1 case because of the mass
rearrangement (evident in the density profiles in Figure 4) briefly
discussed in the last paragraph. At radii well outside the core ra-
dius, the rotation curves of the CDM and SIDM1 halos converge,
though this convergence occurs beyond the plot axes > rs for most
of the halos shown.

An appreciation of why the density profiles of SIDM halos
become cored can be gained from studying their velocity disper-
sion profiles compared to their CDM counterparts, as illustrated in
Figure 6. Here vrms is defined as the root-mean-square speed of all
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Figure 6. Velocity dispersion profiles for our six example halos from our SIDM1 and SIDM0.1 simulations over-plotted with their CDM counterparts. The
velocity dispersion is inflated at small radii and slightly suppressed at large radii. The effects set in at approximately the radius where SIDM particles experience
at least one interaction on average over the lifetime of the halo (see Figure 7).

(2010) for reviews). In fact, one of the most stringent constraints
on the self-interaction cross section comes from analytic subhalo-
evaporation arguments (Gnedin & Ostriker 2001).

Figure 8 demonstrates that the effects of subhalo evaporation
in SIDM are not as strong as previously suggested on analytic
grounds. Here we show the cumulative number of subhalos larger
than a given Vmax for a sample of well-resolved halos in our CDM
(solid), SIDM0.1 (dotted), and and SIDM1 (dashed) simulations.
The associated virial masses for each host halo are shown in the
legend. The left panel presents the Vmax function for all subhalos
within the virial radius of each host and the right panel restricts the
analysis to subhalos within half of the virial radius. We see that gen-
erally the reduction in substructure counts at a fixed Vmax is small
but non-zero and that the effects appear to be stronger at small radii
than large. Similarly, there appears to be slightly more reduction of
substructure in the SIDM cluster halos compared to the galaxy size
systems.

We can understand both trends, 1) the increase in the differ-
ence between the CDM and SIDM Vmax functions as Mvir in-
creases and 2) the increase in the difference as one looks at the
central regions of the halo, using the results from the previous sec-
tion as a guide. The typical probability that particle in an SIDM
subhalo will interact with a particle in the background halo is

P ⇤ ⌃�host(r)(⇥/m)vorb(r)⌥T T, (14)

where vorb(r) is the orbital speed of the subhalo at position r, �host
is the mass density of the host halo, and T is the orbital period.
The typical speed of the subhalo is similar to the rms speed of

the smooth component of the halo, and thus �host(r)(⇥/m)vorb(r)
should be similar to the function we show in Figure 7. At fixed
r/rs we expect P to scale with Vmax as V 3

max/r
2
max (given that

�s ⇧ V 2
max/r

2
max), which is a very mildly increasing function

of Vmax over the range of halo masses we have simulated. Note
though that we expect scatter at fixed halo mass because of the
scatter in the Vmax � rmax relation (Bullock et al. 2001).

While the increase in destruction of subhalos with host halo
mass is not strong, it is clear from the above arguments that subha-
los in the inner parts of the halo (r/rs ⌅ 1) should be destroyed but
the bulk of the subhalos around r/rs ⇥ 1 and beyond should sur-
vive for ⇥/m = 1 cm2/g. This effect is strengthen by the fact that
subhalos in the innermost region of the halo were accreted much
longer ago than subhalos in the outskirts, so they have experienced
many more orbits (Rocha et al. 2011). These arguments explain the
comparisons between the subhalo mass functions plotted in Fig-
ure 8. Our arguments demonstrate that a large fraction of the sub-
halos found in CDM halos (most of which are in the outer parts)
would still survive in SIDM halos for ⇥/m values around or below
1 cm2/g.

Overall in the previous two sections we have seen that the effects
of self-interactions between dark matter particles in cosmological
simulations are primarily in the central regions of dark matter ha-
los, leaving the large scale structure identical to our non-interacting
CDM simulations. Thus we retain the desirable features of CDM
on large scales while revealing different phenomenology near halo

c� 0000 RAS, MNRAS 000, 000–000

Radius/rs
0.5 0.5

Radius/rs
0.1 0.1

σ/m = 1 
σ/m = 0.1

Tuesday, September 10, 13



8 Rocha et al.

Figure 4. Density profiles for our six example halos from our SIDM1 (blue stars) and SIDM0.1 (green triangles) simulations and their CDM counterparts.
With self-interactions turned on, halo central densities decrease, forming cored density profiles. Solid lines are for the best NFW (black) and Burkert (blue) fits,
with the points representing the density at each radial bin found by AHF. The arrow indicates the location of the Burkert core radius rb. rs is the NFW scale
radius of the corresponding CDM halo density profile (black solid line). Burkert profiles provide a reasonable fit to our SIDM1 halos only because rb ⇥ rs
for �/m = 1 cm2/g, so a cored profile with a single scale radius works. As discussed in §7 this is not the case for �/m = 0.1 cm2/g and thus Burkert
profiles are not a good fit to our SIDM0.1 halos.

fully quantify the expected differences between CDM and SIDM
for ⇥/m ⇥ 0.1 cm2/g.

For the SIDM1 cases we can quantify the halo cores by fitting
them to Burkert (1995) profiles

�B(r) =
�br

3
b

(r + rb)(r2 + r2b)
. (12)

These Burkert fits are shown as blue dashed lines. They are good
fits for radii within r ⇥ 2 � 3 rs, but the quality of the fits gets
worse at large radii. The blue arrows in each panel show the value
of the best-fit Burkert core radius for the SIDM1 halos. Note that
the values are remarkably stable in proportion to the CDM rs value
at rb ⇤ 0.7 rs.

As explained in §7, the fact that the SIDM1 profiles are rea-
sonably well characterized by a single scale-radius Burkert profile
may be a lucky accident, only valid for cross sections near 1 cm2/g.
It just so happens that for this cross section the radius where dark
matter particles experience significant scattering sets in at r ⇥ rs
(see Figure 7 and related discussion). For a smaller cross section
(with a correspondingly smaller core) a multiple parameter fit may
be necessary. Given the beginnings of very small cores we are see-
ing in the SIDM0.1 runs, it would appear that we would need one
scale radius to define an rs bend and a second scale radii to define
a distinct core.

Another qualitative fact worth noting is that the density pro-
files of the SIDM1 halos overshoot the CDM density profiles near

the Burkert core radius (not as much as the Burkert fits do, but
the difference in the data points is noticeable). This is due to the
fact that as particles scatter in the center, those that gain energy
are pushed to larger apocenter orbits. This observation invites us
to consider a toy model for SIDM halos where the effect of SIDM
is confined to a region (smaller than a radius of about rb) wherein
particles redistribute energy and move towards a constant density
isothermal core. We will develop this model further to explain the
scaling relations between core size and halo mass in Sec. 6.

The circular velocity curves for the same set of halos discussed
above are shown in Figure 5. The SIDM rotation curves rise more
steeply and have a lower normalization than for CDM within the
NFW scale radius rs. This brings to mind the rotation curves ob-
served for low surface brightness galaxies and we will explore this
connection later. Note though that the peak circular velocity Vmax

actually is slightly higher for the SIDM1 case because of the mass
rearrangement (evident in the density profiles in Figure 4) briefly
discussed in the last paragraph. At radii well outside the core ra-
dius, the rotation curves of the CDM and SIDM1 halos converge,
though this convergence occurs beyond the plot axes > rs for most
of the halos shown.

An appreciation of why the density profiles of SIDM halos
become cored can be gained from studying their velocity disper-
sion profiles compared to their CDM counterparts, as illustrated in
Figure 6. Here vrms is defined as the root-mean-square speed of all

c� 0000 RAS, MNRAS 000, 000–000

10 Rocha et al.

Figure 6. Velocity dispersion profiles for our six example halos from our SIDM1 and SIDM0.1 simulations over-plotted with their CDM counterparts. The
velocity dispersion is inflated at small radii and slightly suppressed at large radii. The effects set in at approximately the radius where SIDM particles experience
at least one interaction on average over the lifetime of the halo (see Figure 7).

(2010) for reviews). In fact, one of the most stringent constraints
on the self-interaction cross section comes from analytic subhalo-
evaporation arguments (Gnedin & Ostriker 2001).

Figure 8 demonstrates that the effects of subhalo evaporation
in SIDM are not as strong as previously suggested on analytic
grounds. Here we show the cumulative number of subhalos larger
than a given Vmax for a sample of well-resolved halos in our CDM
(solid), SIDM0.1 (dotted), and and SIDM1 (dashed) simulations.
The associated virial masses for each host halo are shown in the
legend. The left panel presents the Vmax function for all subhalos
within the virial radius of each host and the right panel restricts the
analysis to subhalos within half of the virial radius. We see that gen-
erally the reduction in substructure counts at a fixed Vmax is small
but non-zero and that the effects appear to be stronger at small radii
than large. Similarly, there appears to be slightly more reduction of
substructure in the SIDM cluster halos compared to the galaxy size
systems.

We can understand both trends, 1) the increase in the differ-
ence between the CDM and SIDM Vmax functions as Mvir in-
creases and 2) the increase in the difference as one looks at the
central regions of the halo, using the results from the previous sec-
tion as a guide. The typical probability that particle in an SIDM
subhalo will interact with a particle in the background halo is

P ⇤ ⌃�host(r)(⇥/m)vorb(r)⌥T T, (14)

where vorb(r) is the orbital speed of the subhalo at position r, �host
is the mass density of the host halo, and T is the orbital period.
The typical speed of the subhalo is similar to the rms speed of

the smooth component of the halo, and thus �host(r)(⇥/m)vorb(r)
should be similar to the function we show in Figure 7. At fixed
r/rs we expect P to scale with Vmax as V 3

max/r
2
max (given that

�s ⇧ V 2
max/r

2
max), which is a very mildly increasing function

of Vmax over the range of halo masses we have simulated. Note
though that we expect scatter at fixed halo mass because of the
scatter in the Vmax � rmax relation (Bullock et al. 2001).

While the increase in destruction of subhalos with host halo
mass is not strong, it is clear from the above arguments that subha-
los in the inner parts of the halo (r/rs ⌅ 1) should be destroyed but
the bulk of the subhalos around r/rs ⇥ 1 and beyond should sur-
vive for ⇥/m = 1 cm2/g. This effect is strengthen by the fact that
subhalos in the innermost region of the halo were accreted much
longer ago than subhalos in the outskirts, so they have experienced
many more orbits (Rocha et al. 2011). These arguments explain the
comparisons between the subhalo mass functions plotted in Fig-
ure 8. Our arguments demonstrate that a large fraction of the sub-
halos found in CDM halos (most of which are in the outer parts)
would still survive in SIDM halos for ⇥/m values around or below
1 cm2/g.

Overall in the previous two sections we have seen that the effects
of self-interactions between dark matter particles in cosmological
simulations are primarily in the central regions of dark matter ha-
los, leaving the large scale structure identical to our non-interacting
CDM simulations. Thus we retain the desirable features of CDM
on large scales while revealing different phenomenology near halo

c� 0000 RAS, MNRAS 000, 000–000

D
en

si
ty

Ve
lo

ci
ty

 D
is

pe
rs

io
n

8 Rocha et al.

Figure 4. Density profiles for our six example halos from our SIDM1 (blue stars) and SIDM0.1 (green triangles) simulations and their CDM counterparts.
With self-interactions turned on, halo central densities decrease, forming cored density profiles. Solid lines are for the best NFW (black) and Burkert (blue) fits,
with the points representing the density at each radial bin found by AHF. The arrow indicates the location of the Burkert core radius rb. rs is the NFW scale
radius of the corresponding CDM halo density profile (black solid line). Burkert profiles provide a reasonable fit to our SIDM1 halos only because rb ⇥ rs
for �/m = 1 cm2/g, so a cored profile with a single scale radius works. As discussed in §7 this is not the case for �/m = 0.1 cm2/g and thus Burkert
profiles are not a good fit to our SIDM0.1 halos.

fully quantify the expected differences between CDM and SIDM
for ⇥/m ⇥ 0.1 cm2/g.

For the SIDM1 cases we can quantify the halo cores by fitting
them to Burkert (1995) profiles

�B(r) =
�br

3
b

(r + rb)(r2 + r2b)
. (12)

These Burkert fits are shown as blue dashed lines. They are good
fits for radii within r ⇥ 2 � 3 rs, but the quality of the fits gets
worse at large radii. The blue arrows in each panel show the value
of the best-fit Burkert core radius for the SIDM1 halos. Note that
the values are remarkably stable in proportion to the CDM rs value
at rb ⇤ 0.7 rs.

As explained in §7, the fact that the SIDM1 profiles are rea-
sonably well characterized by a single scale-radius Burkert profile
may be a lucky accident, only valid for cross sections near 1 cm2/g.
It just so happens that for this cross section the radius where dark
matter particles experience significant scattering sets in at r ⇥ rs
(see Figure 7 and related discussion). For a smaller cross section
(with a correspondingly smaller core) a multiple parameter fit may
be necessary. Given the beginnings of very small cores we are see-
ing in the SIDM0.1 runs, it would appear that we would need one
scale radius to define an rs bend and a second scale radii to define
a distinct core.

Another qualitative fact worth noting is that the density pro-
files of the SIDM1 halos overshoot the CDM density profiles near

the Burkert core radius (not as much as the Burkert fits do, but
the difference in the data points is noticeable). This is due to the
fact that as particles scatter in the center, those that gain energy
are pushed to larger apocenter orbits. This observation invites us
to consider a toy model for SIDM halos where the effect of SIDM
is confined to a region (smaller than a radius of about rb) wherein
particles redistribute energy and move towards a constant density
isothermal core. We will develop this model further to explain the
scaling relations between core size and halo mass in Sec. 6.

The circular velocity curves for the same set of halos discussed
above are shown in Figure 5. The SIDM rotation curves rise more
steeply and have a lower normalization than for CDM within the
NFW scale radius rs. This brings to mind the rotation curves ob-
served for low surface brightness galaxies and we will explore this
connection later. Note though that the peak circular velocity Vmax

actually is slightly higher for the SIDM1 case because of the mass
rearrangement (evident in the density profiles in Figure 4) briefly
discussed in the last paragraph. At radii well outside the core ra-
dius, the rotation curves of the CDM and SIDM1 halos converge,
though this convergence occurs beyond the plot axes > rs for most
of the halos shown.

An appreciation of why the density profiles of SIDM halos
become cored can be gained from studying their velocity disper-
sion profiles compared to their CDM counterparts, as illustrated in
Figure 6. Here vrms is defined as the root-mean-square speed of all
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Figure 6. Velocity dispersion profiles for our six example halos from our SIDM1 and SIDM0.1 simulations over-plotted with their CDM counterparts. The
velocity dispersion is inflated at small radii and slightly suppressed at large radii. The effects set in at approximately the radius where SIDM particles experience
at least one interaction on average over the lifetime of the halo (see Figure 7).

(2010) for reviews). In fact, one of the most stringent constraints
on the self-interaction cross section comes from analytic subhalo-
evaporation arguments (Gnedin & Ostriker 2001).

Figure 8 demonstrates that the effects of subhalo evaporation
in SIDM are not as strong as previously suggested on analytic
grounds. Here we show the cumulative number of subhalos larger
than a given Vmax for a sample of well-resolved halos in our CDM
(solid), SIDM0.1 (dotted), and and SIDM1 (dashed) simulations.
The associated virial masses for each host halo are shown in the
legend. The left panel presents the Vmax function for all subhalos
within the virial radius of each host and the right panel restricts the
analysis to subhalos within half of the virial radius. We see that gen-
erally the reduction in substructure counts at a fixed Vmax is small
but non-zero and that the effects appear to be stronger at small radii
than large. Similarly, there appears to be slightly more reduction of
substructure in the SIDM cluster halos compared to the galaxy size
systems.

We can understand both trends, 1) the increase in the differ-
ence between the CDM and SIDM Vmax functions as Mvir in-
creases and 2) the increase in the difference as one looks at the
central regions of the halo, using the results from the previous sec-
tion as a guide. The typical probability that particle in an SIDM
subhalo will interact with a particle in the background halo is

P ⇤ ⌃�host(r)(⇥/m)vorb(r)⌥T T, (14)

where vorb(r) is the orbital speed of the subhalo at position r, �host
is the mass density of the host halo, and T is the orbital period.
The typical speed of the subhalo is similar to the rms speed of

the smooth component of the halo, and thus �host(r)(⇥/m)vorb(r)
should be similar to the function we show in Figure 7. At fixed
r/rs we expect P to scale with Vmax as V 3

max/r
2
max (given that

�s ⇧ V 2
max/r

2
max), which is a very mildly increasing function

of Vmax over the range of halo masses we have simulated. Note
though that we expect scatter at fixed halo mass because of the
scatter in the Vmax � rmax relation (Bullock et al. 2001).

While the increase in destruction of subhalos with host halo
mass is not strong, it is clear from the above arguments that subha-
los in the inner parts of the halo (r/rs ⌅ 1) should be destroyed but
the bulk of the subhalos around r/rs ⇥ 1 and beyond should sur-
vive for ⇥/m = 1 cm2/g. This effect is strengthen by the fact that
subhalos in the innermost region of the halo were accreted much
longer ago than subhalos in the outskirts, so they have experienced
many more orbits (Rocha et al. 2011). These arguments explain the
comparisons between the subhalo mass functions plotted in Fig-
ure 8. Our arguments demonstrate that a large fraction of the sub-
halos found in CDM halos (most of which are in the outer parts)
would still survive in SIDM halos for ⇥/m values around or below
1 cm2/g.

Overall in the previous two sections we have seen that the effects
of self-interactions between dark matter particles in cosmological
simulations are primarily in the central regions of dark matter ha-
los, leaving the large scale structure identical to our non-interacting
CDM simulations. Thus we retain the desirable features of CDM
on large scales while revealing different phenomenology near halo
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Figure 4. Density profiles for our six example halos from our SIDM1 (blue stars) and SIDM0.1 (green triangles) simulations and their CDM counterparts.
With self-interactions turned on, halo central densities decrease, forming cored density profiles. Solid lines are for the best NFW (black) and Burkert (blue) fits,
with the points representing the density at each radial bin found by AHF. The arrow indicates the location of the Burkert core radius rb. rs is the NFW scale
radius of the corresponding CDM halo density profile (black solid line). Burkert profiles provide a reasonable fit to our SIDM1 halos only because rb ⇥ rs
for �/m = 1 cm2/g, so a cored profile with a single scale radius works. As discussed in §7 this is not the case for �/m = 0.1 cm2/g and thus Burkert
profiles are not a good fit to our SIDM0.1 halos.

fully quantify the expected differences between CDM and SIDM
for ⇥/m ⇥ 0.1 cm2/g.

For the SIDM1 cases we can quantify the halo cores by fitting
them to Burkert (1995) profiles

�B(r) =
�br

3
b

(r + rb)(r2 + r2b)
. (12)

These Burkert fits are shown as blue dashed lines. They are good
fits for radii within r ⇥ 2 � 3 rs, but the quality of the fits gets
worse at large radii. The blue arrows in each panel show the value
of the best-fit Burkert core radius for the SIDM1 halos. Note that
the values are remarkably stable in proportion to the CDM rs value
at rb ⇤ 0.7 rs.

As explained in §7, the fact that the SIDM1 profiles are rea-
sonably well characterized by a single scale-radius Burkert profile
may be a lucky accident, only valid for cross sections near 1 cm2/g.
It just so happens that for this cross section the radius where dark
matter particles experience significant scattering sets in at r ⇥ rs
(see Figure 7 and related discussion). For a smaller cross section
(with a correspondingly smaller core) a multiple parameter fit may
be necessary. Given the beginnings of very small cores we are see-
ing in the SIDM0.1 runs, it would appear that we would need one
scale radius to define an rs bend and a second scale radii to define
a distinct core.

Another qualitative fact worth noting is that the density pro-
files of the SIDM1 halos overshoot the CDM density profiles near

the Burkert core radius (not as much as the Burkert fits do, but
the difference in the data points is noticeable). This is due to the
fact that as particles scatter in the center, those that gain energy
are pushed to larger apocenter orbits. This observation invites us
to consider a toy model for SIDM halos where the effect of SIDM
is confined to a region (smaller than a radius of about rb) wherein
particles redistribute energy and move towards a constant density
isothermal core. We will develop this model further to explain the
scaling relations between core size and halo mass in Sec. 6.

The circular velocity curves for the same set of halos discussed
above are shown in Figure 5. The SIDM rotation curves rise more
steeply and have a lower normalization than for CDM within the
NFW scale radius rs. This brings to mind the rotation curves ob-
served for low surface brightness galaxies and we will explore this
connection later. Note though that the peak circular velocity Vmax

actually is slightly higher for the SIDM1 case because of the mass
rearrangement (evident in the density profiles in Figure 4) briefly
discussed in the last paragraph. At radii well outside the core ra-
dius, the rotation curves of the CDM and SIDM1 halos converge,
though this convergence occurs beyond the plot axes > rs for most
of the halos shown.

An appreciation of why the density profiles of SIDM halos
become cored can be gained from studying their velocity disper-
sion profiles compared to their CDM counterparts, as illustrated in
Figure 6. Here vrms is defined as the root-mean-square speed of all
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Figure 6. Velocity dispersion profiles for our six example halos from our SIDM1 and SIDM0.1 simulations over-plotted with their CDM counterparts. The
velocity dispersion is inflated at small radii and slightly suppressed at large radii. The effects set in at approximately the radius where SIDM particles experience
at least one interaction on average over the lifetime of the halo (see Figure 7).

(2010) for reviews). In fact, one of the most stringent constraints
on the self-interaction cross section comes from analytic subhalo-
evaporation arguments (Gnedin & Ostriker 2001).

Figure 8 demonstrates that the effects of subhalo evaporation
in SIDM are not as strong as previously suggested on analytic
grounds. Here we show the cumulative number of subhalos larger
than a given Vmax for a sample of well-resolved halos in our CDM
(solid), SIDM0.1 (dotted), and and SIDM1 (dashed) simulations.
The associated virial masses for each host halo are shown in the
legend. The left panel presents the Vmax function for all subhalos
within the virial radius of each host and the right panel restricts the
analysis to subhalos within half of the virial radius. We see that gen-
erally the reduction in substructure counts at a fixed Vmax is small
but non-zero and that the effects appear to be stronger at small radii
than large. Similarly, there appears to be slightly more reduction of
substructure in the SIDM cluster halos compared to the galaxy size
systems.

We can understand both trends, 1) the increase in the differ-
ence between the CDM and SIDM Vmax functions as Mvir in-
creases and 2) the increase in the difference as one looks at the
central regions of the halo, using the results from the previous sec-
tion as a guide. The typical probability that particle in an SIDM
subhalo will interact with a particle in the background halo is

P ⇤ ⌃�host(r)(⇥/m)vorb(r)⌥T T, (14)

where vorb(r) is the orbital speed of the subhalo at position r, �host
is the mass density of the host halo, and T is the orbital period.
The typical speed of the subhalo is similar to the rms speed of

the smooth component of the halo, and thus �host(r)(⇥/m)vorb(r)
should be similar to the function we show in Figure 7. At fixed
r/rs we expect P to scale with Vmax as V 3

max/r
2
max (given that

�s ⇧ V 2
max/r

2
max), which is a very mildly increasing function

of Vmax over the range of halo masses we have simulated. Note
though that we expect scatter at fixed halo mass because of the
scatter in the Vmax � rmax relation (Bullock et al. 2001).

While the increase in destruction of subhalos with host halo
mass is not strong, it is clear from the above arguments that subha-
los in the inner parts of the halo (r/rs ⌅ 1) should be destroyed but
the bulk of the subhalos around r/rs ⇥ 1 and beyond should sur-
vive for ⇥/m = 1 cm2/g. This effect is strengthen by the fact that
subhalos in the innermost region of the halo were accreted much
longer ago than subhalos in the outskirts, so they have experienced
many more orbits (Rocha et al. 2011). These arguments explain the
comparisons between the subhalo mass functions plotted in Fig-
ure 8. Our arguments demonstrate that a large fraction of the sub-
halos found in CDM halos (most of which are in the outer parts)
would still survive in SIDM halos for ⇥/m values around or below
1 cm2/g.

Overall in the previous two sections we have seen that the effects
of self-interactions between dark matter particles in cosmological
simulations are primarily in the central regions of dark matter ha-
los, leaving the large scale structure identical to our non-interacting
CDM simulations. Thus we retain the desirable features of CDM
on large scales while revealing different phenomenology near halo
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Figure 4. Density profiles for our six example halos from our SIDM1 (blue stars) and SIDM0.1 (green triangles) simulations and their CDM counterparts.
With self-interactions turned on, halo central densities decrease, forming cored density profiles. Solid lines are for the best NFW (black) and Burkert (blue) fits,
with the points representing the density at each radial bin found by AHF. The arrow indicates the location of the Burkert core radius rb. rs is the NFW scale
radius of the corresponding CDM halo density profile (black solid line). Burkert profiles provide a reasonable fit to our SIDM1 halos only because rb ⇥ rs
for �/m = 1 cm2/g, so a cored profile with a single scale radius works. As discussed in §7 this is not the case for �/m = 0.1 cm2/g and thus Burkert
profiles are not a good fit to our SIDM0.1 halos.

fully quantify the expected differences between CDM and SIDM
for ⇥/m ⇥ 0.1 cm2/g.

For the SIDM1 cases we can quantify the halo cores by fitting
them to Burkert (1995) profiles

�B(r) =
�br

3
b

(r + rb)(r2 + r2b)
. (12)

These Burkert fits are shown as blue dashed lines. They are good
fits for radii within r ⇥ 2 � 3 rs, but the quality of the fits gets
worse at large radii. The blue arrows in each panel show the value
of the best-fit Burkert core radius for the SIDM1 halos. Note that
the values are remarkably stable in proportion to the CDM rs value
at rb ⇤ 0.7 rs.

As explained in §7, the fact that the SIDM1 profiles are rea-
sonably well characterized by a single scale-radius Burkert profile
may be a lucky accident, only valid for cross sections near 1 cm2/g.
It just so happens that for this cross section the radius where dark
matter particles experience significant scattering sets in at r ⇥ rs
(see Figure 7 and related discussion). For a smaller cross section
(with a correspondingly smaller core) a multiple parameter fit may
be necessary. Given the beginnings of very small cores we are see-
ing in the SIDM0.1 runs, it would appear that we would need one
scale radius to define an rs bend and a second scale radii to define
a distinct core.

Another qualitative fact worth noting is that the density pro-
files of the SIDM1 halos overshoot the CDM density profiles near

the Burkert core radius (not as much as the Burkert fits do, but
the difference in the data points is noticeable). This is due to the
fact that as particles scatter in the center, those that gain energy
are pushed to larger apocenter orbits. This observation invites us
to consider a toy model for SIDM halos where the effect of SIDM
is confined to a region (smaller than a radius of about rb) wherein
particles redistribute energy and move towards a constant density
isothermal core. We will develop this model further to explain the
scaling relations between core size and halo mass in Sec. 6.

The circular velocity curves for the same set of halos discussed
above are shown in Figure 5. The SIDM rotation curves rise more
steeply and have a lower normalization than for CDM within the
NFW scale radius rs. This brings to mind the rotation curves ob-
served for low surface brightness galaxies and we will explore this
connection later. Note though that the peak circular velocity Vmax

actually is slightly higher for the SIDM1 case because of the mass
rearrangement (evident in the density profiles in Figure 4) briefly
discussed in the last paragraph. At radii well outside the core ra-
dius, the rotation curves of the CDM and SIDM1 halos converge,
though this convergence occurs beyond the plot axes > rs for most
of the halos shown.

An appreciation of why the density profiles of SIDM halos
become cored can be gained from studying their velocity disper-
sion profiles compared to their CDM counterparts, as illustrated in
Figure 6. Here vrms is defined as the root-mean-square speed of all
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Figure 6. Velocity dispersion profiles for our six example halos from our SIDM1 and SIDM0.1 simulations over-plotted with their CDM counterparts. The
velocity dispersion is inflated at small radii and slightly suppressed at large radii. The effects set in at approximately the radius where SIDM particles experience
at least one interaction on average over the lifetime of the halo (see Figure 7).

(2010) for reviews). In fact, one of the most stringent constraints
on the self-interaction cross section comes from analytic subhalo-
evaporation arguments (Gnedin & Ostriker 2001).

Figure 8 demonstrates that the effects of subhalo evaporation
in SIDM are not as strong as previously suggested on analytic
grounds. Here we show the cumulative number of subhalos larger
than a given Vmax for a sample of well-resolved halos in our CDM
(solid), SIDM0.1 (dotted), and and SIDM1 (dashed) simulations.
The associated virial masses for each host halo are shown in the
legend. The left panel presents the Vmax function for all subhalos
within the virial radius of each host and the right panel restricts the
analysis to subhalos within half of the virial radius. We see that gen-
erally the reduction in substructure counts at a fixed Vmax is small
but non-zero and that the effects appear to be stronger at small radii
than large. Similarly, there appears to be slightly more reduction of
substructure in the SIDM cluster halos compared to the galaxy size
systems.

We can understand both trends, 1) the increase in the differ-
ence between the CDM and SIDM Vmax functions as Mvir in-
creases and 2) the increase in the difference as one looks at the
central regions of the halo, using the results from the previous sec-
tion as a guide. The typical probability that particle in an SIDM
subhalo will interact with a particle in the background halo is

P ⇤ ⌃�host(r)(⇥/m)vorb(r)⌥T T, (14)

where vorb(r) is the orbital speed of the subhalo at position r, �host
is the mass density of the host halo, and T is the orbital period.
The typical speed of the subhalo is similar to the rms speed of

the smooth component of the halo, and thus �host(r)(⇥/m)vorb(r)
should be similar to the function we show in Figure 7. At fixed
r/rs we expect P to scale with Vmax as V 3

max/r
2
max (given that

�s ⇧ V 2
max/r

2
max), which is a very mildly increasing function

of Vmax over the range of halo masses we have simulated. Note
though that we expect scatter at fixed halo mass because of the
scatter in the Vmax � rmax relation (Bullock et al. 2001).

While the increase in destruction of subhalos with host halo
mass is not strong, it is clear from the above arguments that subha-
los in the inner parts of the halo (r/rs ⌅ 1) should be destroyed but
the bulk of the subhalos around r/rs ⇥ 1 and beyond should sur-
vive for ⇥/m = 1 cm2/g. This effect is strengthen by the fact that
subhalos in the innermost region of the halo were accreted much
longer ago than subhalos in the outskirts, so they have experienced
many more orbits (Rocha et al. 2011). These arguments explain the
comparisons between the subhalo mass functions plotted in Fig-
ure 8. Our arguments demonstrate that a large fraction of the sub-
halos found in CDM halos (most of which are in the outer parts)
would still survive in SIDM halos for ⇥/m values around or below
1 cm2/g.

Overall in the previous two sections we have seen that the effects
of self-interactions between dark matter particles in cosmological
simulations are primarily in the central regions of dark matter ha-
los, leaving the large scale structure identical to our non-interacting
CDM simulations. Thus we retain the desirable features of CDM
on large scales while revealing different phenomenology near halo
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Figure 4. Density profiles for our six example halos from our SIDM1 (blue stars) and SIDM0.1 (green triangles) simulations and their CDM counterparts.
With self-interactions turned on, halo central densities decrease, forming cored density profiles. Solid lines are for the best NFW (black) and Burkert (blue) fits,
with the points representing the density at each radial bin found by AHF. The arrow indicates the location of the Burkert core radius rb. rs is the NFW scale
radius of the corresponding CDM halo density profile (black solid line). Burkert profiles provide a reasonable fit to our SIDM1 halos only because rb ⇥ rs
for �/m = 1 cm2/g, so a cored profile with a single scale radius works. As discussed in §7 this is not the case for �/m = 0.1 cm2/g and thus Burkert
profiles are not a good fit to our SIDM0.1 halos.

fully quantify the expected differences between CDM and SIDM
for ⇥/m ⇥ 0.1 cm2/g.

For the SIDM1 cases we can quantify the halo cores by fitting
them to Burkert (1995) profiles

�B(r) =
�br

3
b

(r + rb)(r2 + r2b)
. (12)

These Burkert fits are shown as blue dashed lines. They are good
fits for radii within r ⇥ 2 � 3 rs, but the quality of the fits gets
worse at large radii. The blue arrows in each panel show the value
of the best-fit Burkert core radius for the SIDM1 halos. Note that
the values are remarkably stable in proportion to the CDM rs value
at rb ⇤ 0.7 rs.

As explained in §7, the fact that the SIDM1 profiles are rea-
sonably well characterized by a single scale-radius Burkert profile
may be a lucky accident, only valid for cross sections near 1 cm2/g.
It just so happens that for this cross section the radius where dark
matter particles experience significant scattering sets in at r ⇥ rs
(see Figure 7 and related discussion). For a smaller cross section
(with a correspondingly smaller core) a multiple parameter fit may
be necessary. Given the beginnings of very small cores we are see-
ing in the SIDM0.1 runs, it would appear that we would need one
scale radius to define an rs bend and a second scale radii to define
a distinct core.

Another qualitative fact worth noting is that the density pro-
files of the SIDM1 halos overshoot the CDM density profiles near

the Burkert core radius (not as much as the Burkert fits do, but
the difference in the data points is noticeable). This is due to the
fact that as particles scatter in the center, those that gain energy
are pushed to larger apocenter orbits. This observation invites us
to consider a toy model for SIDM halos where the effect of SIDM
is confined to a region (smaller than a radius of about rb) wherein
particles redistribute energy and move towards a constant density
isothermal core. We will develop this model further to explain the
scaling relations between core size and halo mass in Sec. 6.

The circular velocity curves for the same set of halos discussed
above are shown in Figure 5. The SIDM rotation curves rise more
steeply and have a lower normalization than for CDM within the
NFW scale radius rs. This brings to mind the rotation curves ob-
served for low surface brightness galaxies and we will explore this
connection later. Note though that the peak circular velocity Vmax

actually is slightly higher for the SIDM1 case because of the mass
rearrangement (evident in the density profiles in Figure 4) briefly
discussed in the last paragraph. At radii well outside the core ra-
dius, the rotation curves of the CDM and SIDM1 halos converge,
though this convergence occurs beyond the plot axes > rs for most
of the halos shown.

An appreciation of why the density profiles of SIDM halos
become cored can be gained from studying their velocity disper-
sion profiles compared to their CDM counterparts, as illustrated in
Figure 6. Here vrms is defined as the root-mean-square speed of all

c� 0000 RAS, MNRAS 000, 000–000

10 Rocha et al.

Figure 6. Velocity dispersion profiles for our six example halos from our SIDM1 and SIDM0.1 simulations over-plotted with their CDM counterparts. The
velocity dispersion is inflated at small radii and slightly suppressed at large radii. The effects set in at approximately the radius where SIDM particles experience
at least one interaction on average over the lifetime of the halo (see Figure 7).

(2010) for reviews). In fact, one of the most stringent constraints
on the self-interaction cross section comes from analytic subhalo-
evaporation arguments (Gnedin & Ostriker 2001).

Figure 8 demonstrates that the effects of subhalo evaporation
in SIDM are not as strong as previously suggested on analytic
grounds. Here we show the cumulative number of subhalos larger
than a given Vmax for a sample of well-resolved halos in our CDM
(solid), SIDM0.1 (dotted), and and SIDM1 (dashed) simulations.
The associated virial masses for each host halo are shown in the
legend. The left panel presents the Vmax function for all subhalos
within the virial radius of each host and the right panel restricts the
analysis to subhalos within half of the virial radius. We see that gen-
erally the reduction in substructure counts at a fixed Vmax is small
but non-zero and that the effects appear to be stronger at small radii
than large. Similarly, there appears to be slightly more reduction of
substructure in the SIDM cluster halos compared to the galaxy size
systems.

We can understand both trends, 1) the increase in the differ-
ence between the CDM and SIDM Vmax functions as Mvir in-
creases and 2) the increase in the difference as one looks at the
central regions of the halo, using the results from the previous sec-
tion as a guide. The typical probability that particle in an SIDM
subhalo will interact with a particle in the background halo is

P ⇤ ⌃�host(r)(⇥/m)vorb(r)⌥T T, (14)

where vorb(r) is the orbital speed of the subhalo at position r, �host
is the mass density of the host halo, and T is the orbital period.
The typical speed of the subhalo is similar to the rms speed of

the smooth component of the halo, and thus �host(r)(⇥/m)vorb(r)
should be similar to the function we show in Figure 7. At fixed
r/rs we expect P to scale with Vmax as V 3

max/r
2
max (given that

�s ⇧ V 2
max/r

2
max), which is a very mildly increasing function

of Vmax over the range of halo masses we have simulated. Note
though that we expect scatter at fixed halo mass because of the
scatter in the Vmax � rmax relation (Bullock et al. 2001).

While the increase in destruction of subhalos with host halo
mass is not strong, it is clear from the above arguments that subha-
los in the inner parts of the halo (r/rs ⌅ 1) should be destroyed but
the bulk of the subhalos around r/rs ⇥ 1 and beyond should sur-
vive for ⇥/m = 1 cm2/g. This effect is strengthen by the fact that
subhalos in the innermost region of the halo were accreted much
longer ago than subhalos in the outskirts, so they have experienced
many more orbits (Rocha et al. 2011). These arguments explain the
comparisons between the subhalo mass functions plotted in Fig-
ure 8. Our arguments demonstrate that a large fraction of the sub-
halos found in CDM halos (most of which are in the outer parts)
would still survive in SIDM halos for ⇥/m values around or below
1 cm2/g.

Overall in the previous two sections we have seen that the effects
of self-interactions between dark matter particles in cosmological
simulations are primarily in the central regions of dark matter ha-
los, leaving the large scale structure identical to our non-interacting
CDM simulations. Thus we retain the desirable features of CDM
on large scales while revealing different phenomenology near halo
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Figure 4. Density profiles for our six example halos from our SIDM1 (blue stars) and SIDM0.1 (green triangles) simulations and their CDM counterparts.
With self-interactions turned on, halo central densities decrease, forming cored density profiles. Solid lines are for the best NFW (black) and Burkert (blue) fits,
with the points representing the density at each radial bin found by AHF. The arrow indicates the location of the Burkert core radius rb. rs is the NFW scale
radius of the corresponding CDM halo density profile (black solid line). Burkert profiles provide a reasonable fit to our SIDM1 halos only because rb ⇥ rs
for �/m = 1 cm2/g, so a cored profile with a single scale radius works. As discussed in §7 this is not the case for �/m = 0.1 cm2/g and thus Burkert
profiles are not a good fit to our SIDM0.1 halos.

fully quantify the expected differences between CDM and SIDM
for ⇥/m ⇥ 0.1 cm2/g.

For the SIDM1 cases we can quantify the halo cores by fitting
them to Burkert (1995) profiles

�B(r) =
�br

3
b

(r + rb)(r2 + r2b)
. (12)

These Burkert fits are shown as blue dashed lines. They are good
fits for radii within r ⇥ 2 � 3 rs, but the quality of the fits gets
worse at large radii. The blue arrows in each panel show the value
of the best-fit Burkert core radius for the SIDM1 halos. Note that
the values are remarkably stable in proportion to the CDM rs value
at rb ⇤ 0.7 rs.

As explained in §7, the fact that the SIDM1 profiles are rea-
sonably well characterized by a single scale-radius Burkert profile
may be a lucky accident, only valid for cross sections near 1 cm2/g.
It just so happens that for this cross section the radius where dark
matter particles experience significant scattering sets in at r ⇥ rs
(see Figure 7 and related discussion). For a smaller cross section
(with a correspondingly smaller core) a multiple parameter fit may
be necessary. Given the beginnings of very small cores we are see-
ing in the SIDM0.1 runs, it would appear that we would need one
scale radius to define an rs bend and a second scale radii to define
a distinct core.

Another qualitative fact worth noting is that the density pro-
files of the SIDM1 halos overshoot the CDM density profiles near

the Burkert core radius (not as much as the Burkert fits do, but
the difference in the data points is noticeable). This is due to the
fact that as particles scatter in the center, those that gain energy
are pushed to larger apocenter orbits. This observation invites us
to consider a toy model for SIDM halos where the effect of SIDM
is confined to a region (smaller than a radius of about rb) wherein
particles redistribute energy and move towards a constant density
isothermal core. We will develop this model further to explain the
scaling relations between core size and halo mass in Sec. 6.

The circular velocity curves for the same set of halos discussed
above are shown in Figure 5. The SIDM rotation curves rise more
steeply and have a lower normalization than for CDM within the
NFW scale radius rs. This brings to mind the rotation curves ob-
served for low surface brightness galaxies and we will explore this
connection later. Note though that the peak circular velocity Vmax

actually is slightly higher for the SIDM1 case because of the mass
rearrangement (evident in the density profiles in Figure 4) briefly
discussed in the last paragraph. At radii well outside the core ra-
dius, the rotation curves of the CDM and SIDM1 halos converge,
though this convergence occurs beyond the plot axes > rs for most
of the halos shown.

An appreciation of why the density profiles of SIDM halos
become cored can be gained from studying their velocity disper-
sion profiles compared to their CDM counterparts, as illustrated in
Figure 6. Here vrms is defined as the root-mean-square speed of all
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Figure 6. Velocity dispersion profiles for our six example halos from our SIDM1 and SIDM0.1 simulations over-plotted with their CDM counterparts. The
velocity dispersion is inflated at small radii and slightly suppressed at large radii. The effects set in at approximately the radius where SIDM particles experience
at least one interaction on average over the lifetime of the halo (see Figure 7).

(2010) for reviews). In fact, one of the most stringent constraints
on the self-interaction cross section comes from analytic subhalo-
evaporation arguments (Gnedin & Ostriker 2001).

Figure 8 demonstrates that the effects of subhalo evaporation
in SIDM are not as strong as previously suggested on analytic
grounds. Here we show the cumulative number of subhalos larger
than a given Vmax for a sample of well-resolved halos in our CDM
(solid), SIDM0.1 (dotted), and and SIDM1 (dashed) simulations.
The associated virial masses for each host halo are shown in the
legend. The left panel presents the Vmax function for all subhalos
within the virial radius of each host and the right panel restricts the
analysis to subhalos within half of the virial radius. We see that gen-
erally the reduction in substructure counts at a fixed Vmax is small
but non-zero and that the effects appear to be stronger at small radii
than large. Similarly, there appears to be slightly more reduction of
substructure in the SIDM cluster halos compared to the galaxy size
systems.

We can understand both trends, 1) the increase in the differ-
ence between the CDM and SIDM Vmax functions as Mvir in-
creases and 2) the increase in the difference as one looks at the
central regions of the halo, using the results from the previous sec-
tion as a guide. The typical probability that particle in an SIDM
subhalo will interact with a particle in the background halo is

P ⇤ ⌃�host(r)(⇥/m)vorb(r)⌥T T, (14)

where vorb(r) is the orbital speed of the subhalo at position r, �host
is the mass density of the host halo, and T is the orbital period.
The typical speed of the subhalo is similar to the rms speed of

the smooth component of the halo, and thus �host(r)(⇥/m)vorb(r)
should be similar to the function we show in Figure 7. At fixed
r/rs we expect P to scale with Vmax as V 3

max/r
2
max (given that

�s ⇧ V 2
max/r

2
max), which is a very mildly increasing function

of Vmax over the range of halo masses we have simulated. Note
though that we expect scatter at fixed halo mass because of the
scatter in the Vmax � rmax relation (Bullock et al. 2001).

While the increase in destruction of subhalos with host halo
mass is not strong, it is clear from the above arguments that subha-
los in the inner parts of the halo (r/rs ⌅ 1) should be destroyed but
the bulk of the subhalos around r/rs ⇥ 1 and beyond should sur-
vive for ⇥/m = 1 cm2/g. This effect is strengthen by the fact that
subhalos in the innermost region of the halo were accreted much
longer ago than subhalos in the outskirts, so they have experienced
many more orbits (Rocha et al. 2011). These arguments explain the
comparisons between the subhalo mass functions plotted in Fig-
ure 8. Our arguments demonstrate that a large fraction of the sub-
halos found in CDM halos (most of which are in the outer parts)
would still survive in SIDM halos for ⇥/m values around or below
1 cm2/g.

Overall in the previous two sections we have seen that the effects
of self-interactions between dark matter particles in cosmological
simulations are primarily in the central regions of dark matter ha-
los, leaving the large scale structure identical to our non-interacting
CDM simulations. Thus we retain the desirable features of CDM
on large scales while revealing different phenomenology near halo
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Work in progress - Dwarfs

Oliver Elbert et al in prep.
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σ/m < 1 cm2/g looks more likely!

Results from cosmological simulations - Halo shapes

This is more than an order of magnitude less stringent than Miralda-Escude (2002), 
the reason is that:

• Halos get spherical only within the cores
• If inner parts have flattened density, outer parts have even greater weight.
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Observations

Figure 1: Dissociative clusters studied by scientists involved in this proposal (“Sample 1”). The pink
regions map the X-ray emitting gas in the clusters, and the blue regions denote the mass (mostly dark
matter) distribution in the clusters as inferred from strong and weak lensing. The rightmost panel shows
the phase-space density of a merging cluster in a SIDM simulation with �DM = 1 cm2 g�1. Sources from
left to right: Clowe, Bradač et al. (2006); Jee et al. (2012a); Bradač et al. (2008); Dawson et al. (2011);
Merten et al. (2011); Rocha et al. (2012). Baby Bullet is also known as MACS J0025.4-1222 and Pandora’s
Cluster is also known as Abell 2744.

around due to gravity and eventually come into equilibrium with the other components, but this
is outside the time window of interest here.) To a first approximation the position of the DM, as
inferred from gravitational lensing, matches that of the galaxies, which constrains the collision-
ality of dark matter (Clowe et al., 2006; Markevitch et al., 2004). If DM is collisional in nature,
interactions between DM particles will cause particles in the lower-mass halo to recoil out of the
halo, which reduces the mass and central density of, and creates a drag force on, the lower-mass
halo. This will change the expected separations between the galaxy, DM, and hot gas components
in a cross section-dependent way, as well as reduce the mass-to-light ratio (M/L) of the lower-mass
halo (Markevitch et al., 2004; Randall et al., 2008).

This argument has so far excluded dark matter self-interaction cross sections2 (�DM) above
⇥ 1 cm2 g�1 (Randall et al., 2008). This probably overstates our knowledge because many
important details have not been simulated (see below), but this is still a very large cross section
in particle-physics terms, consistent with the hidden-sector DM models cited above. Remarkably,
we know so little about DM that we still have not ruled out self-interaction comparable to the
strong nuclear force! Beyond the particle-physics motivation, the self-interacting dark matter
(SIDM) hypothesis has been motivated by astrophysical observations:

(i) SIDM would explain the dynamics of dwarf spheroidal galaxies (dSphs) around the Milky
Way. In �CDM simulations of Milky Way-mass galaxies, each realization has of order ten subhalos
which are denser than any known Milky Way dSph (Boylan-Kolchin et al., 2012). Moreover, stellar
kinematic data from the best studied dSph indicate that these galaxies have cored density profiles,
in contrast to WIMP �CDM predictions that these dSph should have cuspy DM density profiles
(Walker & Peñarrubia, 2011; Wolf & Bullock, 2012; Navarro et al., 2004). SIDM would reduce the
central density of and create cores in the subhalos, so that the known luminous dSph would live
in the most massive of the Milky Way’s subhalos (Rocha et al., 2012). Otherwise, one must argue
that many of the densest and most massive subhalos failed to form stars while lower-mass subhalos
did form stars and host the observed dSph. It is the tension between the data and the higher-
density simulated subhalos which most strongly argues for SIDM. A recent analysis of SIDM
simulations by Rocha et al. (2012) suggests that a SIDM cross section �DM ⇥ 0.1 � 0.5 cm2g�1

would lead to the correct central density and core size for the Milky Way dSph.
(ii) Analyses of stellar kinematics in low surface brightness (LSB) and dwarf galaxies continue

to suggest that these galaxies have central densities and density profiles more consistent with the
presence of dark-matter cores than the �CDM prediction of cusps (Simon et al., 2005; Kuzio de

2We follow the convention of quoting the cross section per unit mass. If and when the mass of the DM particle
is identified, this can be converted to a cross sectional area.

2

Figure 2: Known dissociative mergers as a function of the date on which their dissociative nature was
confirmed. Blue boxes indicate clusters for which we have already analyzed the data (Sample 1, Figure 1).
We propose to analyze the remaining clusters (“Sample 2”) consistently, and to confirm of order ten new
clusters, in order to constrain SIDM with an ensemble spanning the relevant merger parameter space.
Newly confirmed systems not shown: AS1063 and SPT-CL J2032-5627.

Naray et al., 2008; Oh et al., 2011). In the same analysis that found that �DM ⇥ 0.1�0.5 cm2g�1

would produce DM cores of the right size and density for the Milky Way dSph, it was found
that this range of cross section also yields appropriate density profiles for LSB and dwarf galaxies
(Rocha et al., 2012).

(iii) Recent observations of the ellipticity of the surface densities (Richard et al., 2010) and
the central density profiles (Newman et al., 2012b,a) of massive galaxy clusters suggest that a
cross section of �DM ⇥ 1 cm2g�1 is too large (Rocha et al., 2012; Peter et al., 2012). However,
cross sections in the range �DM ⇥ 0.1 � 0.5 cm2g�1 may be consistent with these observations.
In particular, after carefully modeling out the baryonic content of a set of seven galaxy clusters
Newman et al. (2012a) find that the central (within 50 kpc) DM density profile is more consistent
with a core or shallow cusp, characteristic of SIDM, than with a �CDM steep cusp.

These observations suggest that SIDM is astrophysically interesting (in the sense that it pro-
duces measurable changes to dark-matter halos) if its cross section is velocity independent and in
the range �DM ⇥ 0.1 � 0.5 cm2g�1. A detection of �DM in this range would explain a variety of
astrophysical observations and open a new window to hidden-sector extensions to the standard
model of physics. Conversely, a nondetection of SIDM by experiments sensitive to this range
would render the SIDM hypothesis astrophysically uninteresting. We propose a comprehen-
sive, rigorous program of observations and simulations of dissociative cluster mergers
to detect or rule out �DM to < 0.1 cm2g�1.

This program has become possible because the accelerating discovery of dissociative mergers
(Figure 2) enables testing of SIDMmodels against a ensemble of dissociative mergers which spans a
wide range of subcluster masses and time since closest approach. The time is right: compute power
and expertise in running SIDM simulations are now capable of performing detailed simulations of
a large ensemble of dissociative merger analogs in a fully cosmological framework with a variety
of SIDM cross sections. To carry out this program, we have assembled a team of observers and

3
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Predictions vs. Observations

P

Mass

P

Vline-of-sight

P

Projected 
Separation

     

Figure 3: Left: definition of the inclination angle � and its relation to the observed and true separations
and velocities (LOS is the line of sight). From Dawson (2012). Center: Probability distribution for the
time since collision TSC0 (defined as the first close pass between the subcluster halo centers) and the
relative velocity between subclusters at the collision for the Musket Ball Cluster. The contours define the
68% and 95% confidence levels. The probability distributions are derived from a modern version of the
timing argument (Dawson, 2012). Right: Probability distributions with the inclusion of a prior based on a
radio relic detection. The radio relic reduces uncertainty in the 3D separation which dramatically reduces
uncertainty in TSC0 from the timing argument. The contours from the center panel are repeated on the
right for comparison.

In Year 1, we will simulate large cosmological volumes with coarse resolution using cold,
collisionless dark matter (CDM). The merging clusters we identify in these simulations will provide
the catalog from which we will select analogs for resimulation at higher resolution and with a
collisional cross section. It is reasonable to use CDM simulations, rather than more expensive
SIDM simulations, to select an ensemble of mergers for resimulation because di�erences between
CDM and SIDM are evident only on length scales much smaller than individual dark-matter halos
(at least for the massive dark-matter halos we are interested in). In fact, the halo mass function
is identical between CDM and SIDM cosmologies in this mass range, even for ⇥DM = 1 cm2g�1,
which is so high that it would give > 100 kpc cores in galaxy clusters (Rocha et al., 2012). CDM
simulations will easily su⇤ce because our primary cut to find analogs is on the masses of the
subclusters, which are in the range where the mass functions are identical. We will simulate these
large cosmological volumes at resolutions high enough to have faithful halo and merger catalogs,
but low enough to complete in in Year 1 with feasible computational resources.

We will use the GADGET-2 TreeSPH code, with which the UC Irvine and Ohio State Uni-
versity teams have significant experience, to run these large CDM simulations (Springel, 2005).
In order to facilitate the zoom simulations, as well as hydrodynamic adaptive-mesh refinement
simulations with our European collaborator Marcus Brüggen, we will use the MUSIC package to
generate initial conditions for the simulation (Hahn & Abel, 2011). Our UC Irvine group has
used MUSIC extensively in the past for initial conditions for zoom simulations, and one of the
advantages of this code package is that it can generate identical initial conditions for a variety of
cosmological structure simulation codes. Also in order to facilitate the zoom simulations, we will
run many medium-scale cosmological realizations to find analogs instead of one enormous volume,
since we have to simulate the whole volume (even if quite coarsely) for the zoom simulations, and
because the number of particles we would have to use for a large volume at fixed mass resolution
would be enormous.

We have determined that a good compromise between volumes large enough to have many
merging clusters and small enough that the zoom simulations can run in a relatively short amount
of time is a box of 650h�1 Mpc on a side, with 5123 particles in the volume (a resolution su⇤cient

7

Importance Sampling

650 Mpc/h
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Conclusions

• SIDM with σ/m < 1 cm2/g is not ruled out by any 
observations

• Cross-sections of σ/m ~ 0.5 cm2/g can solve the 
cusp/core problem and TBTF while still consistent 
with cluster observations.

• We still need to understand the effect of Baryons 
however.

• Merging clusters are a promising way to probe the 
σ/m > 0.1 cm2/g regime. 
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SIDM & CDM have very similar subhalo Vmax functions

Results from cosmological simulations - Substructure
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Figure 11. Burkert scale radius in SIDM1 halos vs. the NFW scale radius
in their CDM counterparts. Points and labels are the same as in Figure 10.
There is a one-to-one correlation indicating that the core size of SIDM1

halos scales the same as the scale radius of CDM halos with Vmax

cated before, the scaling relation for the central density should be
interpreted with care given the large scatter. Given the tight corre-
lation between core radius and rs, it is possible that the substantial
scatter in the central density arises in large part due to the scat-
ter introduced by the assembly history in the concentration-mass
relation. This has important implications for fitting to the rotation
velocity profiles of low-surface brightness spirals (Kuzio de Naray
et al. 2010) and deserves more work.

The simple model constructed above also provides insight into
the core collapse time scales. In particular, as long as the outer part
(region outside r1) dominates the potential well and sets the aver-
age central temperature (or the total kinetic energy in the core), we
do not expect core collapse. This is simply because core collapse
requires uncontrolled decrease in temperature, which is prohibited
here. Once r1 moves out well beyond rmax or to the virial radius,
there is significant loss of particles and core collapse may occur if
there are no further major mergers. The time scale for this process
is much longer than the age of the universe for σ/m = 1 cm2/g
because the inner core is at r1 < rs after 10 Gyr for this self-
interaction strength and we see no evidence for significant mass
loss.

8 OBSERVATIONAL COMPARISONS

The goal of this section is to discuss our results in comparison to
observationally inferred properties of dark-matter density profiles.
In particular, we will focus on the core densities and core sizes. §8.1
presents our expectations for SIDM1 and SIDM0.1. Our predictions
for σ/m = 1 cm2/g are anchored robustly to our simulations,
though they do require some extrapolation beyond the mass range
directly probed by our simulations (Vmax = 130 − 860 km/s).
For σ/m = 0.1 cm2/g the predictions are much less secure be-
cause the associated core sizes are of order our resolution limit,
thus we rely on our our analytic model more directly here. In §8.2,
we discuss our predictions in light of observations of dark-matter
halos for a wide range of halo masses. In §8.3, we discuss our re-

Figure 12. Burkert scale density vs. Vmax. Points and labels are the same
as in Figure10. The trend in the ρb − Vmax relation is not as clear as for
the rb − Vmax relation, with a scatter of up to a factor of 3.

sults on subhalos in the context of past work and constraints on
SIDM based on subhalo properties.

Before proceeding with this discussion we would like to clar-
ify how we quantify core sizes. In this work, we have fit the
σ/m = 1 cm2/g halos with Burkert density profiles. However,
many observational constraints on cores on galaxy scales come
from fitting pseudo-isothermal density profiles with core size rpi
to data (e.g., Simon et al. 2005; Kuzio de Naray et al. 2008), al-
though some constraints do come from Burkert modeling (Salucci
et al. 2012). We found that pseudo-isothermal density profiles also
give good fits to the inner regions of the SIDM1 halos, but Burkert
fits are better because of that profile’s ρ ∝ r−3 dependence at large
radii. For a pseudo-isothermal density profile (∝ 1/(r2c + r2)), the
density decreases to one-fourth the central density at 1.73 times its
core radius rc. Thus, as a crude approximation, one may convert
the Burkert radius to the equivalent pseudo-isothermal core radius
by multiplying by a factor of 0.58 (rc # rb/1.73).

8.1 Predicted Core Sizes and Central Densities in SIDM

8.1.1 SIDM with σ/m = 1 cm2/g.

The central properties of dark-matter halos have been inferred from
observations from tiny Milky Way dwarf spheroidal (dSph) galax-
ies (Vmax ! 50 km/s) to galaxy clusters (Vmax " 1000 km/s). If
we extrapolate the results from our set of SIDM1 simulations using
Eqs. (16)-(20) we predict that SIDM halos with σ/m = 1 cm2/g
would have the following (Burkert) core sizes and central densities:

For galaxy clusters (Vmax # 700− 1000 km/s):

rb # (95− 155) kpc ; ρb # (0.005 − 0.004)M"pc−3

For low-mass spirals (Vmax # 50− 130 km/s):

rb # (3− 10) kpc ; ρb # (0.02− 0.01)M"pc−3

For dwarf spheroidals galaxies (Vmax # 20− 50 km/s):

rb # (0.9− 3) kpc ; ρb # (0.04 − 0.02)M"pc
−3

c© 0000 RAS, MNRAS 000, 000–000

 σ/m = 1 cm2 /g

Up to a factor of 3 scatter

Results from cosmological simulations - Halo densities

Rocha et al. 2013
Peter et al. 2013
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Allow cores of ~30 kpc

             (Newman+ 2012a,b)

Galaxy Clusters
(~ 1014-1015 M halos)

10 Newman et al.

the present measurements supercede earlier ones due to
the improvements described above. Our analysis of A383
is consistent with Newman et al. (2011). The results
presented here for A611, on the other hand, are signif-
icantly di⇥erent from Newman et al. (2009): we find
� = 0.79+0.14

�0.19, rather than � < 0.3 (68% confidence).
This is attributable to two changes in the data: a re-
vised spectroscopic redshift for a multiply-imaged galaxy,
and improved stellar kinematic measurements (see Sec-
tions 4.4 and 6.4 in Paper I).
As we have shown, it is di⇧cult to separate the BCG

and DM profiles with lensing alone due to the low den-
sity (or lack) of constraints near the center. Only in clus-
ters with exceptional lensing configurations is this feasi-
ble. An interesting such case is A1703, which presents
an unusual quad image close to the BCG. Limousin
et al. (2008) and Richard et al. (2009) performed a two-
component fit – a gNFW halo and BCG stars following
light, as in this work – and derive �DM = 0.92+0.05

�0.04. (See
Oguri et al. 2009 for a consistent result with a much
larger error bar.) This may not be inconsistent with our
findings, since two clusters in our sample prefer a similar
slope (A611 and A2390, see Figure 4), and there may
be scatter from cluster to cluster.10 Zitrin et al. (2010)
found that the total density profile in A1703 is well-fit
by an NFW model.
X-ray studies of two nearby clusters (A2589 and

A2029) have also shown that the total density follows
an NFW profile down to ⇤ 0.002� 0.01rvir (Lewis et al.
2003; Zappacosta et al. 2006). The latter authors noted
that for any reasonable �⇥, this implies a shallower DM
profile in the central regions where the stellar mass is sig-
nificant. Their finding agrees well with our work, which
has quantified the split between stars and DM. Schmidt
& Allen (2007) studied a large sample of distant X-ray
clusters. By assuming a typical BCG stellar mass, they
estimated ⇧�DM⌃ = 0.88±0.29 (95% CL). Often the inner
⌅ 40 kpc must be excluded from their analysis, making
a direct comparison di⇧cult.

6. DISCUSSION AND CONCLUSIONS

By combining strong lensing, weak lensing, and stellar
kinematic observations that extend from ⌅ 3 kpc to be-
yond the virial radius, thus spanning the baryon- to DM-
dominated regimes, we constrained flexible, physically-
motivated models of the dark and stellar mass distribu-
tions in 7 massive, relaxed galaxy clusters. As discussed
extensively in Paper I, the density profiles of stars and
DM sum to produce a slope close to CDM-only simu-
lations, at least outside the very central ⇤ 5 � 10 kpc
where stars strongly dominate the mass. In this pa-
per we isolated the dark and stellar density profiles to
quantify the behavior of the DM on small scales, find-
ing a mean asymptotic inner power law slope of ⇧�⌃ =
0.50± 0.13+0.14

�0.13, or equivalently a mean DM core radius

⇧log rcore⌃ = 1.14±0.13+0.14
�0.22. We also presented evidence

10 Limousin et al. (2008) imposed a tight prior on the BCG
stellar mass derived from SPS fits, but did not consider uncertainty
from the IMF. Their SPS estimates are quite high: �SPS

�B � 11,

whereas we find �SPS
�B = 3.0 from fitting the SDSS photometry to

this BCG, also using a Chabrier IMF. Adjusting the latter to our
preferred �SPS = 0.27 yields ��B = 5.7, which agrees with the
estimate ��B � 6 by Zitrin et al. (2010) in this cluster.
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Fig. 6.— Top: Total density profiles, including baryons and DM,
for our sample are overlaid on CDM-only simulations of massive
clusters (Gao et al. 2012b, dashed line, with grey band indicat-
ing the full range of the simulated clusters; see Paper I, Section
10). The dot-dashed line shows a system in which an NFW halo
with concentration c200 = 4.5 is altered using the modified adi-
abatic contraction model of Gnedin et al. (2011). Parameters of
A0 = 1.5, w0 = 0.85 were used, with the BCG described by a Ja⇥e
(1983) profile with scale length rJ/r200 = 0.02 and mass fraction
M�/M200 = 0.002, which are representative of our sample. The
radial extent of the data is indicated at the bottom of the panel.
Bottom: As in the top panel, but showing DM only. (The Phoenix
simulations thus do not change.) Note that CDM halos match the
observed total density profiles better than those of DM alone. The
inclusion of halo contraction (dot-dashed line) only exacerbates the
di⇥erence with the mean observed DM slope (thick black segment).

for possible variation in the inner DM profile from clus-
ter to cluster, which correlates with the size and mass
of the BCG (Figure 5). This implies a close connection
between the DM profile in cluster cores and the assembly
of stars in the BCG.
The conclusion that the inner DM profile is shallower

than that of pure CDM halos is fully consistent with
our previous claims (Sand et al. 2002, 2004, 2008; New-
man et al. 2009, 2011). We have improved upon these
earlier works by collecting improved data for a larger
sample of clusters and refining our analysis techniques,
as discussed in Section 5.3. A particular advance en-
abled by this enlarged, improved sample was a joint

Evidence for lower central DM densities than DM only 
simulations predict across all scales

Galaxy cluster densities

ρ ~ r-β  
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APPENDIX A: DERIVATION OF THE HARD-SPHERE INTERACTION RATE IN N-BODY SIMULATIONS

The challenge is to represent a microphysical scattering process in a macroscopic context in which neither a fluid nor collisionless treatment
is appropriate. In order to develop a Lagrangian technique in which to represent the scattering process, we start with the Boltzmann equation.
Particles with mass m, a hard-sphere scattering cross section dσ/dΩ (as a function of center-of-mass scattering angle), and a distribution
function f(x,v, t) evolve as

Df(x,v, t)
Dt

= Γ[f, σ] (A1)

=

∫

d3v1

∫

dΩ
dσ
dΩ

|v − v1|
[

f(x,v′, t)f(x,v′
1, t)− f(x,v, t)f(x,v1, t)

]

. (A2)

Here, D/Dt is a Lagrangian time derivative and Γ[f, σ] is the collision operator. If the particles were collisionless, the Lagrangian time-
derivative of the distribution function would be zero; the phase-space density of particles would be conserved. The left-hand expression in
the brackets in Equation (A2) represents scattering of particles into a small patch of phase space centered on (x,v), and the right-hand
expression (after the − sign) represents scattering out of that patch of phase space. If v and v1 represent the initial velocities of the primary
and target particles, then v′ and v′

1 are their post-scatter velocities, which are related to the initial velocities by the center-of-mass scattering
angle Ω.

The key step in being able to represent the scattering process in a simulation is the ansatz that the evolution of the coarse-grained
distribution function f̂ (the distribution function averaged over several times the interparticle spacing) is a good representation of the evolution
of the fine-grained distribution function f . In other words, the ansatz is that the solution to

Df̂
Dt

=

∫

d3v1

∫

dΩ
dσ
dΩ

|v − v1|
[

f̂(x,v′, t)f̂(x,v′
1, t)− f̂(x,v, t)f̂(x,v1, t)

]

(A3)

is the same as the solution for f in Equation (A2) averaged over a patch of phase space. If this is the case, our next step is to discretize
Equation (A3) such that we can solve the Boltzmann equation by Monte Carlo N-body methods.

To discretize Equation (A3), we consider a particle-based Lagrangian method in which each particle in the N-body simulation represents
a patch of phase space. In the absence of collisions, the simulation particles trace out geodesics in the gravitational field of the particles. When
we discretize the phase space, we do it as follows:

f̂(x,v, t) =
∑

i

(Mi/m)W (|x− xi|; hi)δ
3(v − vi). (A4)

Here, i labels a discrete macro particle representing a patch of phase space that has mass Mi ; thus each macro particle represents a patch
of phase space inhabited byMi/m of the true particles. We assume a delta-function form for the velocity distribution because each macro
particle travels at only one speed. We treat each macro particle as being smoothed out in configuration space with a smoothing kernel W
with smoothing length hi. The reason for treating each macro particle as inhabiting a finite region of configuration space is that we want the
local estimate of the density

n(x) =

∫

d3vf̂ (A5)

to be smooth. Preliminary tests show that smoothness is necessary to properly estimate the collision term of the Boltzmann equation. Note
that in the main text we useMi = mp and hi = hsi for all i. This is because all of the N-body particles have the same mass in our simulations
and we have fixed hsi to be constant for all particles in the simulations we present.

In the particle-based discretization of the Boltzmann equation, the fact that each particle represents a patch of phase space means that
we must discretize the collision operator; we must integrate the collision operator over the patch of phase space inhabited by a single particle.
Thus, if a specific particle represents a patch of phase space of size δxpδvp, we must calculate

∫

δxp

d3x

∫

δvp

d3v
Df̂
Dt

=

∫

δxp

d3x

∫

δvp

d3v

∫

d3v1

∫

dΩ
dσ
dΩ

|v − v1|
[

f̂(x,v′, t)f̂(x,v′
1, t)− f̂(x,v, t)f̂(x,v1, t)

]

(A6)

Thus, our approach to estimating the collision term and the Boltzmann equation are as follows. To find the collision rate for the region of
phase space associated with a particle j, we divide Equation (A6) through by Mj/m (so that we are calculating the scattering probability
for a single macro particle j), and we consider only the “scattering out” part of the collision operator. We consider the pairwise rate Γij for
particle j to scatter off any of the other i particles. We do a Monte Carlo simulation of the scatters; if a pair of particles is allowed to scatter
in a given small timestep, we calculate the macro particles’ post-scatter velocity using the center-of-mass scattering angle Ω. This latter step
is our approximation to the “scatter out” term of the Boltzmann collision operator.

The pairwise collision operator is

Γpq =
Γ(p|q) + Γ(q|p)

2
, (A7)

where the conditional probability of scattering a specific particle p off a target particle q is Γ(q|p), which is determined by the collision term
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APPENDIX A: DERIVATION OF THE HARD-SPHERE INTERACTION RATE IN N-BODY SIMULATIONS

The challenge is to represent a microphysical scattering process in a macroscopic context in which neither a fluid nor collisionless treatment
is appropriate. In order to develop a Lagrangian technique in which to represent the scattering process, we start with the Boltzmann equation.
Particles with mass m, a hard-sphere scattering cross section dσ/dΩ (as a function of center-of-mass scattering angle), and a distribution
function f(x,v, t) evolve as

Df(x,v, t)
Dt

= Γ[f, σ] (A1)

=

∫

d3v1

∫

dΩ
dσ
dΩ

|v − v1|
[

f(x,v′, t)f(x,v′
1, t)− f(x,v, t)f(x,v1, t)

]

. (A2)

Here, D/Dt is a Lagrangian time derivative and Γ[f, σ] is the collision operator. If the particles were collisionless, the Lagrangian time-
derivative of the distribution function would be zero; the phase-space density of particles would be conserved. The left-hand expression in
the brackets in Equation (A2) represents scattering of particles into a small patch of phase space centered on (x,v), and the right-hand
expression (after the − sign) represents scattering out of that patch of phase space. If v and v1 represent the initial velocities of the primary
and target particles, then v′ and v′

1 are their post-scatter velocities, which are related to the initial velocities by the center-of-mass scattering
angle Ω.

The key step in being able to represent the scattering process in a simulation is the ansatz that the evolution of the coarse-grained
distribution function f̂ (the distribution function averaged over several times the interparticle spacing) is a good representation of the evolution
of the fine-grained distribution function f . In other words, the ansatz is that the solution to

Df̂
Dt

=

∫

d3v1

∫

dΩ
dσ
dΩ

|v − v1|
[

f̂(x,v′, t)f̂(x,v′
1, t)− f̂(x,v, t)f̂(x,v1, t)

]

(A3)

is the same as the solution for f in Equation (A2) averaged over a patch of phase space. If this is the case, our next step is to discretize
Equation (A3) such that we can solve the Boltzmann equation by Monte Carlo N-body methods.

To discretize Equation (A3), we consider a particle-based Lagrangian method in which each particle in the N-body simulation represents
a patch of phase space. In the absence of collisions, the simulation particles trace out geodesics in the gravitational field of the particles. When
we discretize the phase space, we do it as follows:

f̂(x,v, t) =
∑

i

(Mi/m)W (|x− xi|; hi)δ
3(v − vi). (A4)

Here, i labels a discrete macro particle representing a patch of phase space that has mass Mi ; thus each macro particle represents a patch
of phase space inhabited byMi/m of the true particles. We assume a delta-function form for the velocity distribution because each macro
particle travels at only one speed. We treat each macro particle as being smoothed out in configuration space with a smoothing kernel W
with smoothing length hi. The reason for treating each macro particle as inhabiting a finite region of configuration space is that we want the
local estimate of the density

n(x) =

∫

d3vf̂ (A5)

to be smooth. Preliminary tests show that smoothness is necessary to properly estimate the collision term of the Boltzmann equation. Note
that in the main text we useMi = mp and hi = hsi for all i. This is because all of the N-body particles have the same mass in our simulations
and we have fixed hsi to be constant for all particles in the simulations we present.

In the particle-based discretization of the Boltzmann equation, the fact that each particle represents a patch of phase space means that
we must discretize the collision operator; we must integrate the collision operator over the patch of phase space inhabited by a single particle.
Thus, if a specific particle represents a patch of phase space of size δxpδvp, we must calculate

∫

δxp

d3x

∫

δvp

d3v
Df̂
Dt

=

∫

δxp

d3x

∫

δvp

d3v

∫

d3v1

∫

dΩ
dσ
dΩ

|v − v1|
[

f̂(x,v′, t)f̂(x,v′
1, t)− f̂(x,v, t)f̂(x,v1, t)

]

(A6)

Thus, our approach to estimating the collision term and the Boltzmann equation are as follows. To find the collision rate for the region of
phase space associated with a particle j, we divide Equation (A6) through by Mj/m (so that we are calculating the scattering probability
for a single macro particle j), and we consider only the “scattering out” part of the collision operator. We consider the pairwise rate Γij for
particle j to scatter off any of the other i particles. We do a Monte Carlo simulation of the scatters; if a pair of particles is allowed to scatter
in a given small timestep, we calculate the macro particles’ post-scatter velocity using the center-of-mass scattering angle Ω. This latter step
is our approximation to the “scatter out” term of the Boltzmann collision operator.

The pairwise collision operator is

Γpq =
Γ(p|q) + Γ(q|p)

2
, (A7)

where the conditional probability of scattering a specific particle p off a target particle q is Γ(q|p), which is determined by the collision term
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APPENDIX A: DERIVATION OF THE HARD-SPHERE INTERACTION RATE IN N-BODY SIMULATIONS

The challenge is to represent a microphysical scattering process in a macroscopic context in which neither a fluid nor collisionless treatment
is appropriate. In order to develop a Lagrangian technique in which to represent the scattering process, we start with the Boltzmann equation.
Particles with mass m, a hard-sphere scattering cross section dσ/dΩ (as a function of center-of-mass scattering angle), and a distribution
function f(x,v, t) evolve as

Df(x,v, t)
Dt

= Γ[f, σ] (A1)

=

∫

d3v1

∫

dΩ
dσ
dΩ

|v − v1|
[

f(x,v′, t)f(x,v′
1, t)− f(x,v, t)f(x,v1, t)

]

. (A2)

Here, D/Dt is a Lagrangian time derivative and Γ[f, σ] is the collision operator. If the particles were collisionless, the Lagrangian time-
derivative of the distribution function would be zero; the phase-space density of particles would be conserved. The left-hand expression in
the brackets in Equation (A2) represents scattering of particles into a small patch of phase space centered on (x,v), and the right-hand
expression (after the − sign) represents scattering out of that patch of phase space. If v and v1 represent the initial velocities of the primary
and target particles, then v′ and v′

1 are their post-scatter velocities, which are related to the initial velocities by the center-of-mass scattering
angle Ω.

The key step in being able to represent the scattering process in a simulation is the ansatz that the evolution of the coarse-grained
distribution function f̂ (the distribution function averaged over several times the interparticle spacing) is a good representation of the evolution
of the fine-grained distribution function f . In other words, the ansatz is that the solution to

Df̂
Dt

=

∫

d3v1

∫

dΩ
dσ
dΩ

|v − v1|
[

f̂(x,v′, t)f̂(x,v′
1, t)− f̂(x,v, t)f̂(x,v1, t)

]

(A3)

is the same as the solution for f in Equation (A2) averaged over a patch of phase space. If this is the case, our next step is to discretize
Equation (A3) such that we can solve the Boltzmann equation by Monte Carlo N-body methods.

To discretize Equation (A3), we consider a particle-based Lagrangian method in which each particle in the N-body simulation represents
a patch of phase space. In the absence of collisions, the simulation particles trace out geodesics in the gravitational field of the particles. When
we discretize the phase space, we do it as follows:

f̂(x,v, t) =
∑

i

(Mi/m)W (|x− xi|; hi)δ
3(v − vi). (A4)

Here, i labels a discrete macro particle representing a patch of phase space that has mass Mi ; thus each macro particle represents a patch
of phase space inhabited byMi/m of the true particles. We assume a delta-function form for the velocity distribution because each macro
particle travels at only one speed. We treat each macro particle as being smoothed out in configuration space with a smoothing kernel W
with smoothing length hi. The reason for treating each macro particle as inhabiting a finite region of configuration space is that we want the
local estimate of the density

n(x) =

∫

d3vf̂ (A5)

to be smooth. Preliminary tests show that smoothness is necessary to properly estimate the collision term of the Boltzmann equation. Note
that in the main text we useMi = mp and hi = hsi for all i. This is because all of the N-body particles have the same mass in our simulations
and we have fixed hsi to be constant for all particles in the simulations we present.

In the particle-based discretization of the Boltzmann equation, the fact that each particle represents a patch of phase space means that
we must discretize the collision operator; we must integrate the collision operator over the patch of phase space inhabited by a single particle.
Thus, if a specific particle represents a patch of phase space of size δxpδvp, we must calculate

∫

δxp

d3x

∫

δvp

d3v
Df̂
Dt

=

∫

δxp

d3x

∫

δvp

d3v

∫

d3v1

∫

dΩ
dσ
dΩ

|v − v1|
[

f̂(x,v′, t)f̂(x,v′
1, t)− f̂(x,v, t)f̂(x,v1, t)

]

(A6)

Thus, our approach to estimating the collision term and the Boltzmann equation are as follows. To find the collision rate for the region of
phase space associated with a particle j, we divide Equation (A6) through by Mj/m (so that we are calculating the scattering probability
for a single macro particle j), and we consider only the “scattering out” part of the collision operator. We consider the pairwise rate Γij for
particle j to scatter off any of the other i particles. We do a Monte Carlo simulation of the scatters; if a pair of particles is allowed to scatter
in a given small timestep, we calculate the macro particles’ post-scatter velocity using the center-of-mass scattering angle Ω. This latter step
is our approximation to the “scatter out” term of the Boltzmann collision operator.

The pairwise collision operator is

Γpq =
Γ(p|q) + Γ(q|p)

2
, (A7)

where the conditional probability of scattering a specific particle p off a target particle q is Γ(q|p), which is determined by the collision term
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APPENDIX A: DERIVATION OF THE HARD-SPHERE INTERACTION RATE IN N-BODY SIMULATIONS

The challenge is to represent a microphysical scattering process in a macroscopic context in which neither a fluid nor collisionless treatment
is appropriate. In order to develop a Lagrangian technique in which to represent the scattering process, we start with the Boltzmann equation.
Particles with mass m, a hard-sphere scattering cross section dσ/dΩ (as a function of center-of-mass scattering angle), and a distribution
function f(x,v, t) evolve as

Df(x,v, t)
Dt

= Γ[f, σ] (A1)

=

∫

d3v1

∫

dΩ
dσ
dΩ

|v − v1|
[

f(x,v′, t)f(x,v′
1, t)− f(x,v, t)f(x,v1, t)

]

. (A2)

Here, D/Dt is a Lagrangian time derivative and Γ[f, σ] is the collision operator. If the particles were collisionless, the Lagrangian time-
derivative of the distribution function would be zero; the phase-space density of particles would be conserved. The left-hand expression in
the brackets in Equation (A2) represents scattering of particles into a small patch of phase space centered on (x,v), and the right-hand
expression (after the − sign) represents scattering out of that patch of phase space. If v and v1 represent the initial velocities of the primary
and target particles, then v′ and v′

1 are their post-scatter velocities, which are related to the initial velocities by the center-of-mass scattering
angle Ω.

The key step in being able to represent the scattering process in a simulation is the ansatz that the evolution of the coarse-grained
distribution function f̂ (the distribution function averaged over several times the interparticle spacing) is a good representation of the evolution
of the fine-grained distribution function f . In other words, the ansatz is that the solution to

Df̂
Dt

=

∫

d3v1

∫

dΩ
dσ
dΩ

|v − v1|
[

f̂(x,v′, t)f̂(x,v′
1, t)− f̂(x,v, t)f̂(x,v1, t)

]

(A3)

is the same as the solution for f in Equation (A2) averaged over a patch of phase space. If this is the case, our next step is to discretize
Equation (A3) such that we can solve the Boltzmann equation by Monte Carlo N-body methods.

To discretize Equation (A3), we consider a particle-based Lagrangian method in which each particle in the N-body simulation represents
a patch of phase space. In the absence of collisions, the simulation particles trace out geodesics in the gravitational field of the particles. When
we discretize the phase space, we do it as follows:

f̂(x,v, t) =
∑

i

(Mi/m)W (|x− xi|; hi)δ
3(v − vi). (A4)

Here, i labels a discrete macro particle representing a patch of phase space that has mass Mi ; thus each macro particle represents a patch
of phase space inhabited byMi/m of the true particles. We assume a delta-function form for the velocity distribution because each macro
particle travels at only one speed. We treat each macro particle as being smoothed out in configuration space with a smoothing kernel W
with smoothing length hi. The reason for treating each macro particle as inhabiting a finite region of configuration space is that we want the
local estimate of the density

n(x) =

∫

d3vf̂ (A5)

to be smooth. Preliminary tests show that smoothness is necessary to properly estimate the collision term of the Boltzmann equation. Note
that in the main text we useMi = mp and hi = hsi for all i. This is because all of the N-body particles have the same mass in our simulations
and we have fixed hsi to be constant for all particles in the simulations we present.

In the particle-based discretization of the Boltzmann equation, the fact that each particle represents a patch of phase space means that
we must discretize the collision operator; we must integrate the collision operator over the patch of phase space inhabited by a single particle.
Thus, if a specific particle represents a patch of phase space of size δxpδvp, we must calculate

∫

δxp

d3x

∫

δvp

d3v
Df̂
Dt

=

∫

δxp

d3x

∫

δvp

d3v

∫

d3v1

∫

dΩ
dσ
dΩ

|v − v1|
[

f̂(x,v′, t)f̂(x,v′
1, t)− f̂(x,v, t)f̂(x,v1, t)

]

(A6)

Thus, our approach to estimating the collision term and the Boltzmann equation are as follows. To find the collision rate for the region of
phase space associated with a particle j, we divide Equation (A6) through by Mj/m (so that we are calculating the scattering probability
for a single macro particle j), and we consider only the “scattering out” part of the collision operator. We consider the pairwise rate Γij for
particle j to scatter off any of the other i particles. We do a Monte Carlo simulation of the scatters; if a pair of particles is allowed to scatter
in a given small timestep, we calculate the macro particles’ post-scatter velocity using the center-of-mass scattering angle Ω. This latter step
is our approximation to the “scatter out” term of the Boltzmann collision operator.

The pairwise collision operator is

Γpq =
Γ(p|q) + Γ(q|p)

2
, (A7)

where the conditional probability of scattering a specific particle p off a target particle q is Γ(q|p), which is determined by the collision term
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used initial cluster density profiles that were unmotivated cosmo-
logically with central densities about a factor of two too high for the
SIDM cross sections considered (producing a scattering rate that is
inconsistently high). Based on this observation, the bullet cluster
constraint based on evaporation of dark matter from the subclus-
ter should be relaxed since the amount of subcluster mass that be-
comes unbound is directly proportional to the density of dark mat-
ter encountered in its orbit. Moreover, their model galaxies were
placed in the cluster halo potentials without subhalos surrounding
them, an assumption (based on analytic estimates for SIDM sub-
halo evaporation) that is not supported by our simulations. This
could affect the constraints based on the (lack of) offset between
dynamical mass and light. Thus we believe that the bullet cluster
constraints as discussed above are likely only relevant for models
with σ/m > 1 cm2/g. However, the constraints could be made
significantly stronger by comparing SIDM predictions to the densi-
ties inferred from the convergence maps since the central halo den-
sities for σ/m ! 1 cm2/g are significantly lower than the CDM
predictions, as we show later.

Given these motivations, we perform a set of cosmologi-
cal simulations with both CDM and SIDM. For SIDM we ran
σ/m = 1 and 0.1 cm2/g models (hereafter SIDM1 and SIDM0.1),
i.e., models that we have argued pass the Bullet cluster tests. Our
simulations provide us with a sample of halos that span a mass
range much larger than either Davé et al. (2001) or Yoshida et al.
(2000) both with and without self-interactions.

One of the key findings from our simulations is that the core
sizes are expected to scale approximately as a fixed fraction of the
NFW scale radius the halo would have in the absence of scatter-
ings. We can see where this scaling arises from a quick look at
Equation 1. This equation allows us to argue that the radius (r1)
below which we expect dark matter particles (on average) to have
scattered once or more is set by:

ρsf(r/rs)vrms ∝
V 2
max

r2max
f(r1/rs)Vmax = constant , (2)

where f(x) is the functional form of the NFW (or a related) den-
sity profile. In writing the above equation we have assumed that the
density profile for SIDM is not significantly different from CDM at
r1, something that we verify through our simulations. Now, since
CDM enforces a Vmax − rmax relation such that Vmax ∝ r1.4−1.5

max ,
we see that the solution to r1/rs is going to be only mildly depen-
dent on the halo properties. We develop an analytic model based
on this insight later, but this is the underlying reason for why we
find core sizes to be a fixed fraction of the NFW scale radius of the
same halo in the absence of scatterings.

The major conclusion we reach based on the simulations and
the analytic model presented here is that a self-interacting dark
matter model with a cross-section over dark matter particle mass
∼ 0.1 cm2/g would be capable of reproducing the core sizes
and central densities observed in dark matter halos at all scales,
from clusters to dwarf spheroidals, without the need for velocity-
dependence in the cross-section.

In the next section, we discuss our new algorithm to compute
the self-interaction probability for N-body particles, derived self-
consistently from the Boltzmann equation. We discuss this new
algorithm in detail in Appendix A. In §2, we show how this al-
gorithm is implemented in the publicly available code GADGET-2
(Springel 2005). We run tests that show that our algorithm gets the
correct interaction rate and post-scattering kinematics. The results
of these tests are in §3. The cosmological simulations with this new
algorithm are described in detail in §4. In §5.1 we provide some

preliminary illustrations of our simulation snapshots and in 5.2 we
demonstrate that the large-scale statistical properties of SIDM are
identical to CDM. In §5.3 we present the properties of individual
SIDM1 and SIDM0.1 halos and compare them to the their CDM
counterparts. In §5.4 we discuss the subhalo mass functions in our
SIDM and CDM simulations and show that SIDM1 subhalo mass
functions are very close to that of CDM in the range of halo masses
we can resolve. We provide scaling relations for the SIDM1 halo
properties in §6 and in §7 we present an analytic model that repro-
duces these scaling relations as well as the absolute densities and
core radii of SIDM1 halos. We use these scaling relations and the
analytic model to make a broad-brush comparison to observed data
in §8. We present a summary together with our final conclusions in
§9.

2 SIMULATING DARKMATTER SELF INTERACTIONS

Our simulations rely on a new algorithm for modeling self-
interacting dark matter with N-body simulations. Here we intro-
duce our approach and provide a brief summary. In Appendix A we
derive the algorithm explicitly starting with the Botlzmann equa-
tion and give details for general implementation.

In N-body simulations, the simulated (macro)particles repre-
sent an ensemble of many dark-matter particles. Each simulation
particle of mass mp can be thought of as a patch of dark-matter
phase-space density. In our treatment of dark matter self-scattering,
the phase space patch of each particle is represented by a delta func-
tion in velocity and a spatially extended kernelW (r, hsi), smooth-
ing out the phase space in configuration space on a self-interaction
smoothing length hsi. The value of hsi needs to be set by consid-
ering the physical conditions of the problem (see §3) as it specifies
the range over which N-body particles can affect each other via
self-interactions. In principle, hsi could be different for each parti-
cle and vary depending on the local density, but in the simulations
presented here we fix hsi to be the same for all particles in a given
simulation, setting the size of hsi according the lowest densities at
which self-interactions are effective for a given cross section.

When two phase-space patches overlap, we need to calculate
the pairwise interaction rate between them. We do so by consid-
ering the “scattering out” part of the Boltzmann collision term in
Equation (A1) and Eqs. (A8)-(A13). The implied rate of scattering
of an N-body particle j off of a target particle i of massmp is

Γ(i|j) = (σ/m)mp|vi − vj |gji , (3)

where gji is a number density factor that accounts for the overlap
of the two particles’ smoothing kernels: 1

gji =

∫ hsi

0

d3x′W (|x′|, hsi)W (|δxji + x
′|, hsi) . (4)

The probability that such an interaction occurs in a time step δt is

P (i|j) = Γ(i|j) δt , (5)

and the total probability of interaction between N-body particles i
and j is

Pij =
P (i|j) + P (j|i)

2
. (6)

Specifically, Pij is the probability for a macroparticle representing

1 This equation applies only if hsi is the same for both particles. See Ap-
pendix A for the general form.
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used initial cluster density profiles that were unmotivated cosmo-
logically with central densities about a factor of two too high for the
SIDM cross sections considered (producing a scattering rate that is
inconsistently high). Based on this observation, the bullet cluster
constraint based on evaporation of dark matter from the subclus-
ter should be relaxed since the amount of subcluster mass that be-
comes unbound is directly proportional to the density of dark mat-
ter encountered in its orbit. Moreover, their model galaxies were
placed in the cluster halo potentials without subhalos surrounding
them, an assumption (based on analytic estimates for SIDM sub-
halo evaporation) that is not supported by our simulations. This
could affect the constraints based on the (lack of) offset between
dynamical mass and light. Thus we believe that the bullet cluster
constraints as discussed above are likely only relevant for models
with σ/m > 1 cm2/g. However, the constraints could be made
significantly stronger by comparing SIDM predictions to the densi-
ties inferred from the convergence maps since the central halo den-
sities for σ/m ! 1 cm2/g are significantly lower than the CDM
predictions, as we show later.

Given these motivations, we perform a set of cosmologi-
cal simulations with both CDM and SIDM. For SIDM we ran
σ/m = 1 and 0.1 cm2/g models (hereafter SIDM1 and SIDM0.1),
i.e., models that we have argued pass the Bullet cluster tests. Our
simulations provide us with a sample of halos that span a mass
range much larger than either Davé et al. (2001) or Yoshida et al.
(2000) both with and without self-interactions.

One of the key findings from our simulations is that the core
sizes are expected to scale approximately as a fixed fraction of the
NFW scale radius the halo would have in the absence of scatter-
ings. We can see where this scaling arises from a quick look at
Equation 1. This equation allows us to argue that the radius (r1)
below which we expect dark matter particles (on average) to have
scattered once or more is set by:

ρsf(r/rs)vrms ∝
V 2
max

r2max
f(r1/rs)Vmax = constant , (2)

where f(x) is the functional form of the NFW (or a related) den-
sity profile. In writing the above equation we have assumed that the
density profile for SIDM is not significantly different from CDM at
r1, something that we verify through our simulations. Now, since
CDM enforces a Vmax − rmax relation such that Vmax ∝ r1.4−1.5

max ,
we see that the solution to r1/rs is going to be only mildly depen-
dent on the halo properties. We develop an analytic model based
on this insight later, but this is the underlying reason for why we
find core sizes to be a fixed fraction of the NFW scale radius of the
same halo in the absence of scatterings.

The major conclusion we reach based on the simulations and
the analytic model presented here is that a self-interacting dark
matter model with a cross-section over dark matter particle mass
∼ 0.1 cm2/g would be capable of reproducing the core sizes
and central densities observed in dark matter halos at all scales,
from clusters to dwarf spheroidals, without the need for velocity-
dependence in the cross-section.

In the next section, we discuss our new algorithm to compute
the self-interaction probability for N-body particles, derived self-
consistently from the Boltzmann equation. We discuss this new
algorithm in detail in Appendix A. In §2, we show how this al-
gorithm is implemented in the publicly available code GADGET-2
(Springel 2005). We run tests that show that our algorithm gets the
correct interaction rate and post-scattering kinematics. The results
of these tests are in §3. The cosmological simulations with this new
algorithm are described in detail in §4. In §5.1 we provide some

preliminary illustrations of our simulation snapshots and in 5.2 we
demonstrate that the large-scale statistical properties of SIDM are
identical to CDM. In §5.3 we present the properties of individual
SIDM1 and SIDM0.1 halos and compare them to the their CDM
counterparts. In §5.4 we discuss the subhalo mass functions in our
SIDM and CDM simulations and show that SIDM1 subhalo mass
functions are very close to that of CDM in the range of halo masses
we can resolve. We provide scaling relations for the SIDM1 halo
properties in §6 and in §7 we present an analytic model that repro-
duces these scaling relations as well as the absolute densities and
core radii of SIDM1 halos. We use these scaling relations and the
analytic model to make a broad-brush comparison to observed data
in §8. We present a summary together with our final conclusions in
§9.

2 SIMULATING DARKMATTER SELF INTERACTIONS

Our simulations rely on a new algorithm for modeling self-
interacting dark matter with N-body simulations. Here we intro-
duce our approach and provide a brief summary. In Appendix A we
derive the algorithm explicitly starting with the Botlzmann equa-
tion and give details for general implementation.

In N-body simulations, the simulated (macro)particles repre-
sent an ensemble of many dark-matter particles. Each simulation
particle of mass mp can be thought of as a patch of dark-matter
phase-space density. In our treatment of dark matter self-scattering,
the phase space patch of each particle is represented by a delta func-
tion in velocity and a spatially extended kernelW (r, hsi), smooth-
ing out the phase space in configuration space on a self-interaction
smoothing length hsi. The value of hsi needs to be set by consid-
ering the physical conditions of the problem (see §3) as it specifies
the range over which N-body particles can affect each other via
self-interactions. In principle, hsi could be different for each parti-
cle and vary depending on the local density, but in the simulations
presented here we fix hsi to be the same for all particles in a given
simulation, setting the size of hsi according the lowest densities at
which self-interactions are effective for a given cross section.

When two phase-space patches overlap, we need to calculate
the pairwise interaction rate between them. We do so by consid-
ering the “scattering out” part of the Boltzmann collision term in
Equation (A1) and Eqs. (A8)-(A13). The implied rate of scattering
of an N-body particle j off of a target particle i of massmp is

Γ(i|j) = (σ/m)mp|vi − vj |gji , (3)

where gji is a number density factor that accounts for the overlap
of the two particles’ smoothing kernels: 1

gji =

∫ hsi

0

d3x′W (|x′|, hsi)W (|δxji + x
′|, hsi) . (4)

The probability that such an interaction occurs in a time step δt is

P (i|j) = Γ(i|j) δt , (5)

and the total probability of interaction between N-body particles i
and j is

Pij =
P (i|j) + P (j|i)

2
. (6)

Specifically, Pij is the probability for a macroparticle representing

1 This equation applies only if hsi is the same for both particles. See Ap-
pendix A for the general form.
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used initial cluster density profiles that were unmotivated cosmo-
logically with central densities about a factor of two too high for the
SIDM cross sections considered (producing a scattering rate that is
inconsistently high). Based on this observation, the bullet cluster
constraint based on evaporation of dark matter from the subclus-
ter should be relaxed since the amount of subcluster mass that be-
comes unbound is directly proportional to the density of dark mat-
ter encountered in its orbit. Moreover, their model galaxies were
placed in the cluster halo potentials without subhalos surrounding
them, an assumption (based on analytic estimates for SIDM sub-
halo evaporation) that is not supported by our simulations. This
could affect the constraints based on the (lack of) offset between
dynamical mass and light. Thus we believe that the bullet cluster
constraints as discussed above are likely only relevant for models
with σ/m > 1 cm2/g. However, the constraints could be made
significantly stronger by comparing SIDM predictions to the densi-
ties inferred from the convergence maps since the central halo den-
sities for σ/m ! 1 cm2/g are significantly lower than the CDM
predictions, as we show later.

Given these motivations, we perform a set of cosmologi-
cal simulations with both CDM and SIDM. For SIDM we ran
σ/m = 1 and 0.1 cm2/g models (hereafter SIDM1 and SIDM0.1),
i.e., models that we have argued pass the Bullet cluster tests. Our
simulations provide us with a sample of halos that span a mass
range much larger than either Davé et al. (2001) or Yoshida et al.
(2000) both with and without self-interactions.

One of the key findings from our simulations is that the core
sizes are expected to scale approximately as a fixed fraction of the
NFW scale radius the halo would have in the absence of scatter-
ings. We can see where this scaling arises from a quick look at
Equation 1. This equation allows us to argue that the radius (r1)
below which we expect dark matter particles (on average) to have
scattered once or more is set by:

ρsf(r/rs)vrms ∝
V 2
max

r2max
f(r1/rs)Vmax = constant , (2)

where f(x) is the functional form of the NFW (or a related) den-
sity profile. In writing the above equation we have assumed that the
density profile for SIDM is not significantly different from CDM at
r1, something that we verify through our simulations. Now, since
CDM enforces a Vmax − rmax relation such that Vmax ∝ r1.4−1.5

max ,
we see that the solution to r1/rs is going to be only mildly depen-
dent on the halo properties. We develop an analytic model based
on this insight later, but this is the underlying reason for why we
find core sizes to be a fixed fraction of the NFW scale radius of the
same halo in the absence of scatterings.

The major conclusion we reach based on the simulations and
the analytic model presented here is that a self-interacting dark
matter model with a cross-section over dark matter particle mass
∼ 0.1 cm2/g would be capable of reproducing the core sizes
and central densities observed in dark matter halos at all scales,
from clusters to dwarf spheroidals, without the need for velocity-
dependence in the cross-section.

In the next section, we discuss our new algorithm to compute
the self-interaction probability for N-body particles, derived self-
consistently from the Boltzmann equation. We discuss this new
algorithm in detail in Appendix A. In §2, we show how this al-
gorithm is implemented in the publicly available code GADGET-2
(Springel 2005). We run tests that show that our algorithm gets the
correct interaction rate and post-scattering kinematics. The results
of these tests are in §3. The cosmological simulations with this new
algorithm are described in detail in §4. In §5.1 we provide some

preliminary illustrations of our simulation snapshots and in 5.2 we
demonstrate that the large-scale statistical properties of SIDM are
identical to CDM. In §5.3 we present the properties of individual
SIDM1 and SIDM0.1 halos and compare them to the their CDM
counterparts. In §5.4 we discuss the subhalo mass functions in our
SIDM and CDM simulations and show that SIDM1 subhalo mass
functions are very close to that of CDM in the range of halo masses
we can resolve. We provide scaling relations for the SIDM1 halo
properties in §6 and in §7 we present an analytic model that repro-
duces these scaling relations as well as the absolute densities and
core radii of SIDM1 halos. We use these scaling relations and the
analytic model to make a broad-brush comparison to observed data
in §8. We present a summary together with our final conclusions in
§9.

2 SIMULATING DARKMATTER SELF INTERACTIONS

Our simulations rely on a new algorithm for modeling self-
interacting dark matter with N-body simulations. Here we intro-
duce our approach and provide a brief summary. In Appendix A we
derive the algorithm explicitly starting with the Botlzmann equa-
tion and give details for general implementation.

In N-body simulations, the simulated (macro)particles repre-
sent an ensemble of many dark-matter particles. Each simulation
particle of mass mp can be thought of as a patch of dark-matter
phase-space density. In our treatment of dark matter self-scattering,
the phase space patch of each particle is represented by a delta func-
tion in velocity and a spatially extended kernelW (r, hsi), smooth-
ing out the phase space in configuration space on a self-interaction
smoothing length hsi. The value of hsi needs to be set by consid-
ering the physical conditions of the problem (see §3) as it specifies
the range over which N-body particles can affect each other via
self-interactions. In principle, hsi could be different for each parti-
cle and vary depending on the local density, but in the simulations
presented here we fix hsi to be the same for all particles in a given
simulation, setting the size of hsi according the lowest densities at
which self-interactions are effective for a given cross section.

When two phase-space patches overlap, we need to calculate
the pairwise interaction rate between them. We do so by consid-
ering the “scattering out” part of the Boltzmann collision term in
Equation (A1) and Eqs. (A8)-(A13). The implied rate of scattering
of an N-body particle j off of a target particle i of massmp is

Γ(i|j) = (σ/m)mp|vi − vj |gji , (3)

where gji is a number density factor that accounts for the overlap
of the two particles’ smoothing kernels: 1

gji =

∫ hsi

0

d3x′W (|x′|, hsi)W (|δxji + x
′|, hsi) . (4)

The probability that such an interaction occurs in a time step δt is

P (i|j) = Γ(i|j) δt , (5)

and the total probability of interaction between N-body particles i
and j is

Pij =
P (i|j) + P (j|i)

2
. (6)

Specifically, Pij is the probability for a macroparticle representing

1 This equation applies only if hsi is the same for both particles. See Ap-
pendix A for the general form.
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used initial cluster density profiles that were unmotivated cosmo-
logically with central densities about a factor of two too high for the
SIDM cross sections considered (producing a scattering rate that is
inconsistently high). Based on this observation, the bullet cluster
constraint based on evaporation of dark matter from the subclus-
ter should be relaxed since the amount of subcluster mass that be-
comes unbound is directly proportional to the density of dark mat-
ter encountered in its orbit. Moreover, their model galaxies were
placed in the cluster halo potentials without subhalos surrounding
them, an assumption (based on analytic estimates for SIDM sub-
halo evaporation) that is not supported by our simulations. This
could affect the constraints based on the (lack of) offset between
dynamical mass and light. Thus we believe that the bullet cluster
constraints as discussed above are likely only relevant for models
with σ/m > 1 cm2/g. However, the constraints could be made
significantly stronger by comparing SIDM predictions to the densi-
ties inferred from the convergence maps since the central halo den-
sities for σ/m ! 1 cm2/g are significantly lower than the CDM
predictions, as we show later.

Given these motivations, we perform a set of cosmologi-
cal simulations with both CDM and SIDM. For SIDM we ran
σ/m = 1 and 0.1 cm2/g models (hereafter SIDM1 and SIDM0.1),
i.e., models that we have argued pass the Bullet cluster tests. Our
simulations provide us with a sample of halos that span a mass
range much larger than either Davé et al. (2001) or Yoshida et al.
(2000) both with and without self-interactions.

One of the key findings from our simulations is that the core
sizes are expected to scale approximately as a fixed fraction of the
NFW scale radius the halo would have in the absence of scatter-
ings. We can see where this scaling arises from a quick look at
Equation 1. This equation allows us to argue that the radius (r1)
below which we expect dark matter particles (on average) to have
scattered once or more is set by:

ρsf(r/rs)vrms ∝
V 2
max

r2max
f(r1/rs)Vmax = constant , (2)

where f(x) is the functional form of the NFW (or a related) den-
sity profile. In writing the above equation we have assumed that the
density profile for SIDM is not significantly different from CDM at
r1, something that we verify through our simulations. Now, since
CDM enforces a Vmax − rmax relation such that Vmax ∝ r1.4−1.5

max ,
we see that the solution to r1/rs is going to be only mildly depen-
dent on the halo properties. We develop an analytic model based
on this insight later, but this is the underlying reason for why we
find core sizes to be a fixed fraction of the NFW scale radius of the
same halo in the absence of scatterings.

The major conclusion we reach based on the simulations and
the analytic model presented here is that a self-interacting dark
matter model with a cross-section over dark matter particle mass
∼ 0.1 cm2/g would be capable of reproducing the core sizes
and central densities observed in dark matter halos at all scales,
from clusters to dwarf spheroidals, without the need for velocity-
dependence in the cross-section.

In the next section, we discuss our new algorithm to compute
the self-interaction probability for N-body particles, derived self-
consistently from the Boltzmann equation. We discuss this new
algorithm in detail in Appendix A. In §2, we show how this al-
gorithm is implemented in the publicly available code GADGET-2
(Springel 2005). We run tests that show that our algorithm gets the
correct interaction rate and post-scattering kinematics. The results
of these tests are in §3. The cosmological simulations with this new
algorithm are described in detail in §4. In §5.1 we provide some

preliminary illustrations of our simulation snapshots and in 5.2 we
demonstrate that the large-scale statistical properties of SIDM are
identical to CDM. In §5.3 we present the properties of individual
SIDM1 and SIDM0.1 halos and compare them to the their CDM
counterparts. In §5.4 we discuss the subhalo mass functions in our
SIDM and CDM simulations and show that SIDM1 subhalo mass
functions are very close to that of CDM in the range of halo masses
we can resolve. We provide scaling relations for the SIDM1 halo
properties in §6 and in §7 we present an analytic model that repro-
duces these scaling relations as well as the absolute densities and
core radii of SIDM1 halos. We use these scaling relations and the
analytic model to make a broad-brush comparison to observed data
in §8. We present a summary together with our final conclusions in
§9.

2 SIMULATING DARKMATTER SELF INTERACTIONS

Our simulations rely on a new algorithm for modeling self-
interacting dark matter with N-body simulations. Here we intro-
duce our approach and provide a brief summary. In Appendix A we
derive the algorithm explicitly starting with the Botlzmann equa-
tion and give details for general implementation.

In N-body simulations, the simulated (macro)particles repre-
sent an ensemble of many dark-matter particles. Each simulation
particle of mass mp can be thought of as a patch of dark-matter
phase-space density. In our treatment of dark matter self-scattering,
the phase space patch of each particle is represented by a delta func-
tion in velocity and a spatially extended kernelW (r, hsi), smooth-
ing out the phase space in configuration space on a self-interaction
smoothing length hsi. The value of hsi needs to be set by consid-
ering the physical conditions of the problem (see §3) as it specifies
the range over which N-body particles can affect each other via
self-interactions. In principle, hsi could be different for each parti-
cle and vary depending on the local density, but in the simulations
presented here we fix hsi to be the same for all particles in a given
simulation, setting the size of hsi according the lowest densities at
which self-interactions are effective for a given cross section.

When two phase-space patches overlap, we need to calculate
the pairwise interaction rate between them. We do so by consid-
ering the “scattering out” part of the Boltzmann collision term in
Equation (A1) and Eqs. (A8)-(A13). The implied rate of scattering
of an N-body particle j off of a target particle i of massmp is

Γ(i|j) = (σ/m)mp|vi − vj |gji , (3)

where gji is a number density factor that accounts for the overlap
of the two particles’ smoothing kernels: 1

gji =

∫ hsi

0

d3x′W (|x′|, hsi)W (|δxji + x
′|, hsi) . (4)

The probability that such an interaction occurs in a time step δt is

P (i|j) = Γ(i|j) δt , (5)

and the total probability of interaction between N-body particles i
and j is

Pij =
P (i|j) + P (j|i)

2
. (6)

Specifically, Pij is the probability for a macroparticle representing

1 This equation applies only if hsi is the same for both particles. See Ap-
pendix A for the general form.
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used initial cluster density profiles that were unmotivated cosmo-
logically with central densities about a factor of two too high for the
SIDM cross sections considered (producing a scattering rate that is
inconsistently high). Based on this observation, the bullet cluster
constraint based on evaporation of dark matter from the subclus-
ter should be relaxed since the amount of subcluster mass that be-
comes unbound is directly proportional to the density of dark mat-
ter encountered in its orbit. Moreover, their model galaxies were
placed in the cluster halo potentials without subhalos surrounding
them, an assumption (based on analytic estimates for SIDM sub-
halo evaporation) that is not supported by our simulations. This
could affect the constraints based on the (lack of) offset between
dynamical mass and light. Thus we believe that the bullet cluster
constraints as discussed above are likely only relevant for models
with σ/m > 1 cm2/g. However, the constraints could be made
significantly stronger by comparing SIDM predictions to the densi-
ties inferred from the convergence maps since the central halo den-
sities for σ/m ! 1 cm2/g are significantly lower than the CDM
predictions, as we show later.

Given these motivations, we perform a set of cosmologi-
cal simulations with both CDM and SIDM. For SIDM we ran
σ/m = 1 and 0.1 cm2/g models (hereafter SIDM1 and SIDM0.1),
i.e., models that we have argued pass the Bullet cluster tests. Our
simulations provide us with a sample of halos that span a mass
range much larger than either Davé et al. (2001) or Yoshida et al.
(2000) both with and without self-interactions.

One of the key findings from our simulations is that the core
sizes are expected to scale approximately as a fixed fraction of the
NFW scale radius the halo would have in the absence of scatter-
ings. We can see where this scaling arises from a quick look at
Equation 1. This equation allows us to argue that the radius (r1)
below which we expect dark matter particles (on average) to have
scattered once or more is set by:

ρsf(r/rs)vrms ∝
V 2
max

r2max
f(r1/rs)Vmax = constant , (2)

where f(x) is the functional form of the NFW (or a related) den-
sity profile. In writing the above equation we have assumed that the
density profile for SIDM is not significantly different from CDM at
r1, something that we verify through our simulations. Now, since
CDM enforces a Vmax − rmax relation such that Vmax ∝ r1.4−1.5

max ,
we see that the solution to r1/rs is going to be only mildly depen-
dent on the halo properties. We develop an analytic model based
on this insight later, but this is the underlying reason for why we
find core sizes to be a fixed fraction of the NFW scale radius of the
same halo in the absence of scatterings.

The major conclusion we reach based on the simulations and
the analytic model presented here is that a self-interacting dark
matter model with a cross-section over dark matter particle mass
∼ 0.1 cm2/g would be capable of reproducing the core sizes
and central densities observed in dark matter halos at all scales,
from clusters to dwarf spheroidals, without the need for velocity-
dependence in the cross-section.

In the next section, we discuss our new algorithm to compute
the self-interaction probability for N-body particles, derived self-
consistently from the Boltzmann equation. We discuss this new
algorithm in detail in Appendix A. In §2, we show how this al-
gorithm is implemented in the publicly available code GADGET-2
(Springel 2005). We run tests that show that our algorithm gets the
correct interaction rate and post-scattering kinematics. The results
of these tests are in §3. The cosmological simulations with this new
algorithm are described in detail in §4. In §5.1 we provide some

preliminary illustrations of our simulation snapshots and in 5.2 we
demonstrate that the large-scale statistical properties of SIDM are
identical to CDM. In §5.3 we present the properties of individual
SIDM1 and SIDM0.1 halos and compare them to the their CDM
counterparts. In §5.4 we discuss the subhalo mass functions in our
SIDM and CDM simulations and show that SIDM1 subhalo mass
functions are very close to that of CDM in the range of halo masses
we can resolve. We provide scaling relations for the SIDM1 halo
properties in §6 and in §7 we present an analytic model that repro-
duces these scaling relations as well as the absolute densities and
core radii of SIDM1 halos. We use these scaling relations and the
analytic model to make a broad-brush comparison to observed data
in §8. We present a summary together with our final conclusions in
§9.

2 SIMULATING DARKMATTER SELF INTERACTIONS

Our simulations rely on a new algorithm for modeling self-
interacting dark matter with N-body simulations. Here we intro-
duce our approach and provide a brief summary. In Appendix A we
derive the algorithm explicitly starting with the Botlzmann equa-
tion and give details for general implementation.

In N-body simulations, the simulated (macro)particles repre-
sent an ensemble of many dark-matter particles. Each simulation
particle of mass mp can be thought of as a patch of dark-matter
phase-space density. In our treatment of dark matter self-scattering,
the phase space patch of each particle is represented by a delta func-
tion in velocity and a spatially extended kernelW (r, hsi), smooth-
ing out the phase space in configuration space on a self-interaction
smoothing length hsi. The value of hsi needs to be set by consid-
ering the physical conditions of the problem (see §3) as it specifies
the range over which N-body particles can affect each other via
self-interactions. In principle, hsi could be different for each parti-
cle and vary depending on the local density, but in the simulations
presented here we fix hsi to be the same for all particles in a given
simulation, setting the size of hsi according the lowest densities at
which self-interactions are effective for a given cross section.

When two phase-space patches overlap, we need to calculate
the pairwise interaction rate between them. We do so by consid-
ering the “scattering out” part of the Boltzmann collision term in
Equation (A1) and Eqs. (A8)-(A13). The implied rate of scattering
of an N-body particle j off of a target particle i of massmp is

Γ(i|j) = (σ/m)mp|vi − vj |gji , (3)

where gji is a number density factor that accounts for the overlap
of the two particles’ smoothing kernels: 1

gji =

∫ hsi

0

d3x′W (|x′|, hsi)W (|δxji + x
′|, hsi) . (4)

The probability that such an interaction occurs in a time step δt is

P (i|j) = Γ(i|j) δt , (5)

and the total probability of interaction between N-body particles i
and j is

Pij =
P (i|j) + P (j|i)

2
. (6)

Specifically, Pij is the probability for a macroparticle representing

1 This equation applies only if hsi is the same for both particles. See Ap-
pendix A for the general form.
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used initial cluster density profiles that were unmotivated cosmo-
logically with central densities about a factor of two too high for the
SIDM cross sections considered (producing a scattering rate that is
inconsistently high). Based on this observation, the bullet cluster
constraint based on evaporation of dark matter from the subclus-
ter should be relaxed since the amount of subcluster mass that be-
comes unbound is directly proportional to the density of dark mat-
ter encountered in its orbit. Moreover, their model galaxies were
placed in the cluster halo potentials without subhalos surrounding
them, an assumption (based on analytic estimates for SIDM sub-
halo evaporation) that is not supported by our simulations. This
could affect the constraints based on the (lack of) offset between
dynamical mass and light. Thus we believe that the bullet cluster
constraints as discussed above are likely only relevant for models
with σ/m > 1 cm2/g. However, the constraints could be made
significantly stronger by comparing SIDM predictions to the densi-
ties inferred from the convergence maps since the central halo den-
sities for σ/m ! 1 cm2/g are significantly lower than the CDM
predictions, as we show later.

Given these motivations, we perform a set of cosmologi-
cal simulations with both CDM and SIDM. For SIDM we ran
σ/m = 1 and 0.1 cm2/g models (hereafter SIDM1 and SIDM0.1),
i.e., models that we have argued pass the Bullet cluster tests. Our
simulations provide us with a sample of halos that span a mass
range much larger than either Davé et al. (2001) or Yoshida et al.
(2000) both with and without self-interactions.

One of the key findings from our simulations is that the core
sizes are expected to scale approximately as a fixed fraction of the
NFW scale radius the halo would have in the absence of scatter-
ings. We can see where this scaling arises from a quick look at
Equation 1. This equation allows us to argue that the radius (r1)
below which we expect dark matter particles (on average) to have
scattered once or more is set by:

ρsf(r/rs)vrms ∝
V 2
max

r2max
f(r1/rs)Vmax = constant , (2)

where f(x) is the functional form of the NFW (or a related) den-
sity profile. In writing the above equation we have assumed that the
density profile for SIDM is not significantly different from CDM at
r1, something that we verify through our simulations. Now, since
CDM enforces a Vmax − rmax relation such that Vmax ∝ r1.4−1.5

max ,
we see that the solution to r1/rs is going to be only mildly depen-
dent on the halo properties. We develop an analytic model based
on this insight later, but this is the underlying reason for why we
find core sizes to be a fixed fraction of the NFW scale radius of the
same halo in the absence of scatterings.

The major conclusion we reach based on the simulations and
the analytic model presented here is that a self-interacting dark
matter model with a cross-section over dark matter particle mass
∼ 0.1 cm2/g would be capable of reproducing the core sizes
and central densities observed in dark matter halos at all scales,
from clusters to dwarf spheroidals, without the need for velocity-
dependence in the cross-section.

In the next section, we discuss our new algorithm to compute
the self-interaction probability for N-body particles, derived self-
consistently from the Boltzmann equation. We discuss this new
algorithm in detail in Appendix A. In §2, we show how this al-
gorithm is implemented in the publicly available code GADGET-2
(Springel 2005). We run tests that show that our algorithm gets the
correct interaction rate and post-scattering kinematics. The results
of these tests are in §3. The cosmological simulations with this new
algorithm are described in detail in §4. In §5.1 we provide some

preliminary illustrations of our simulation snapshots and in 5.2 we
demonstrate that the large-scale statistical properties of SIDM are
identical to CDM. In §5.3 we present the properties of individual
SIDM1 and SIDM0.1 halos and compare them to the their CDM
counterparts. In §5.4 we discuss the subhalo mass functions in our
SIDM and CDM simulations and show that SIDM1 subhalo mass
functions are very close to that of CDM in the range of halo masses
we can resolve. We provide scaling relations for the SIDM1 halo
properties in §6 and in §7 we present an analytic model that repro-
duces these scaling relations as well as the absolute densities and
core radii of SIDM1 halos. We use these scaling relations and the
analytic model to make a broad-brush comparison to observed data
in §8. We present a summary together with our final conclusions in
§9.

2 SIMULATING DARKMATTER SELF INTERACTIONS

Our simulations rely on a new algorithm for modeling self-
interacting dark matter with N-body simulations. Here we intro-
duce our approach and provide a brief summary. In Appendix A we
derive the algorithm explicitly starting with the Botlzmann equa-
tion and give details for general implementation.

In N-body simulations, the simulated (macro)particles repre-
sent an ensemble of many dark-matter particles. Each simulation
particle of mass mp can be thought of as a patch of dark-matter
phase-space density. In our treatment of dark matter self-scattering,
the phase space patch of each particle is represented by a delta func-
tion in velocity and a spatially extended kernelW (r, hsi), smooth-
ing out the phase space in configuration space on a self-interaction
smoothing length hsi. The value of hsi needs to be set by consid-
ering the physical conditions of the problem (see §3) as it specifies
the range over which N-body particles can affect each other via
self-interactions. In principle, hsi could be different for each parti-
cle and vary depending on the local density, but in the simulations
presented here we fix hsi to be the same for all particles in a given
simulation, setting the size of hsi according the lowest densities at
which self-interactions are effective for a given cross section.

When two phase-space patches overlap, we need to calculate
the pairwise interaction rate between them. We do so by consid-
ering the “scattering out” part of the Boltzmann collision term in
Equation (A1) and Eqs. (A8)-(A13). The implied rate of scattering
of an N-body particle j off of a target particle i of massmp is

Γ(i|j) = (σ/m)mp|vi − vj |gji , (3)

where gji is a number density factor that accounts for the overlap
of the two particles’ smoothing kernels: 1

gji =

∫ hsi

0

d3x′W (|x′|, hsi)W (|δxji + x
′|, hsi) . (4)

The probability that such an interaction occurs in a time step δt is

P (i|j) = Γ(i|j) δt , (5)

and the total probability of interaction between N-body particles i
and j is

Pij =
P (i|j) + P (j|i)

2
. (6)

Specifically, Pij is the probability for a macroparticle representing

1 This equation applies only if hsi is the same for both particles. See Ap-
pendix A for the general form.
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a patch of phase space around (xj ,vj) to interact with a target
particle representing a patch of phase space around (xi,vi) in a
time δt.

We determine if particles interact by drawing a random num-
ber for each pair of particles that are close enough for the proba-
bility of interaction to be greater than zero. If a pair does scatter,
we do a Monte Carlo for the new velocity directions, populating
these parts of the phase-space and deleting the two particles at their
initial phase-space locations. Note that by virtue of populating the
new phase space regions, we are taking care of the “scattering in”
term of the collision integral in Equation (A1). We avoid double
counting by only accounting for Pij = Pji once during a given
time-step δt. In the limit of a large number of macroparticles, the
total interaction probability for each particle i should approach

Pi =
∑

j

Pij . (7)

We show in §3 that this approach correctly reproduces the expected
number of scatterings in a idealized test case.

Our method for simulating scattering differs from previous
approaches in a few key ways. It is most similar to that of Davé
et al. (2001) in that we both directly consider interactions between
pairs of phase-space patches and rely on a scattering rate similar
in form to Equation 3. The difference is that their geometric factor
gji is not the same—our factor arises explicitly from the overlap
in patches of phase space between neighboring macroparticles, as
derived from the collision term in the Boltzmann equation (see Ap-
pendix A for details). Other authors determine the scattering rate Γ
of individual phase-space patches based on estimates of the local
mass density (typically using some number of nearest neighbors or
using an SPH kernel). The Monte Carlo is then based on an esti-
mated scattering rate of an individual particle on the background,
and a scattering partner is only chosen after a scattering event is
determined to have occurred (Kochanek et al. 2000; Yoshida et al.
2000; Colı́n et al. 2002; Randall et al. 2008). The scattering prob-
ability in this latter approach is not symmetric. For macroparticles
of identical mass, P (i|j) = P (j|i) explicitly in our approach, but
not the other approach because the density estimated at the posi-
tion of macroparticle i need not be the same as that estimated at
the position of particle j. In the future, there should be a direct
comparison among these scattering algorithms to determine if they
yield consistent results.

We have implemented our algorithm in the publicly available
version of the cosmological simulation code GADGET-2 (Springel
2005). GADGET-2 computes the short-range gravitational interac-
tions by means of a hierarchical multipole expansion, also known
as a tree algorithm. Particles are grouped hierarchically by a re-
peated subdivision of space, so their gravitational contribution can
be accounted by means of a single multipole force computation. A
cubical root node encompasses the full mass distribution. The node
is repeatedly subdivided into eight daughter nodes of half the side
length each (an oct-tree) until one ends up with “leaf” nodes con-
taining single particles. Forces for a given particle are then obtained
by “walking” the tree, opening nodes that are too close for their
multipole expansion to be a correct approximation to their gravita-
tional contribution. In GADGET-2, spurious strong close encoun-
ters by particles are avoided by convolving the single point particle
density distribution with a normalized spline kernel (“gravitational
softening”).

To implement our algorithm, we take advantage of the tree-
walk already build in GADGET-2, computing self interactions dur-
ing the calculation of the gravitational interactions. For this to work

Figure 1. Fraction of the expected total number of interactions that are com-
puted in our test simulation as a function of the self-interaction smoothing
length. The self-interaction cross section for each run is shown in units of
cm2/g in the legend. The code converges to the expected number of interac-
tions when the smoothing length approaches the background inter-particle
separation, i.e. when hsi(ρbg/mp)1/3 ! 0.2.

we have to modify the opening criterion such that nodes are opened
if they are able to have particles closer than 2hsi from a target scat-
terer (or hi + hj if particles have different self-interaction smooth-
ing lengths). When computing the probability of interaction we use
the same spline kernel used in GADGET-2 (Monaghan & Lattanzio
1985), defined as

W (r, h) =
8

πh3
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
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If a pair interacts we give both particles a kick consistent with
an elastic scattering that is isotropic in the center of mass frame.
The post-scatter particle velocities are

v
′
0 = vc +

m1

m0 +m1
V e,

v
′
1 = vc −

m0

m0 +m1
V e, (9)

where vc is the center of mass velocity, V is the relative speed of
the particles (conserved for elastic collisions) and e is a randomly
chosen direction.

The time-step criterion is also modified to assure that the scat-
tering probability for any pair of particles is small, P = Γ δt <<
1. An individual particle time-step is decreased by a factor of 2 if
during the last tree-walk the maximum probability of interaction for
any pair involving such a particle was Pmax > 0.2. Once a particle
time-step is modified due to the previous restriction, if Pmax < 0.1
for such a particle and its current time-step is smaller than the one
given by the standard criterion on GADGET-2, we increase it by a
factor of 2.

3 TEST OF THE SIDM IMPLEMENTATION

Before performing cosmological simulations, we carried out a con-
trolled test of the implementation in order to make sure the scatter-
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a patch of phase space around (xj ,vj) to interact with a target
particle representing a patch of phase space around (xi,vi) in a
time δt.

We determine if particles interact by drawing a random num-
ber for each pair of particles that are close enough for the proba-
bility of interaction to be greater than zero. If a pair does scatter,
we do a Monte Carlo for the new velocity directions, populating
these parts of the phase-space and deleting the two particles at their
initial phase-space locations. Note that by virtue of populating the
new phase space regions, we are taking care of the “scattering in”
term of the collision integral in Equation (A1). We avoid double
counting by only accounting for Pij = Pji once during a given
time-step δt. In the limit of a large number of macroparticles, the
total interaction probability for each particle i should approach

Pi =
∑

j

Pij . (7)

We show in §3 that this approach correctly reproduces the expected
number of scatterings in a idealized test case.

Our method for simulating scattering differs from previous
approaches in a few key ways. It is most similar to that of Davé
et al. (2001) in that we both directly consider interactions between
pairs of phase-space patches and rely on a scattering rate similar
in form to Equation 3. The difference is that their geometric factor
gji is not the same—our factor arises explicitly from the overlap
in patches of phase space between neighboring macroparticles, as
derived from the collision term in the Boltzmann equation (see Ap-
pendix A for details). Other authors determine the scattering rate Γ
of individual phase-space patches based on estimates of the local
mass density (typically using some number of nearest neighbors or
using an SPH kernel). The Monte Carlo is then based on an esti-
mated scattering rate of an individual particle on the background,
and a scattering partner is only chosen after a scattering event is
determined to have occurred (Kochanek et al. 2000; Yoshida et al.
2000; Colı́n et al. 2002; Randall et al. 2008). The scattering prob-
ability in this latter approach is not symmetric. For macroparticles
of identical mass, P (i|j) = P (j|i) explicitly in our approach, but
not the other approach because the density estimated at the posi-
tion of macroparticle i need not be the same as that estimated at
the position of particle j. In the future, there should be a direct
comparison among these scattering algorithms to determine if they
yield consistent results.

We have implemented our algorithm in the publicly available
version of the cosmological simulation code GADGET-2 (Springel
2005). GADGET-2 computes the short-range gravitational interac-
tions by means of a hierarchical multipole expansion, also known
as a tree algorithm. Particles are grouped hierarchically by a re-
peated subdivision of space, so their gravitational contribution can
be accounted by means of a single multipole force computation. A
cubical root node encompasses the full mass distribution. The node
is repeatedly subdivided into eight daughter nodes of half the side
length each (an oct-tree) until one ends up with “leaf” nodes con-
taining single particles. Forces for a given particle are then obtained
by “walking” the tree, opening nodes that are too close for their
multipole expansion to be a correct approximation to their gravita-
tional contribution. In GADGET-2, spurious strong close encoun-
ters by particles are avoided by convolving the single point particle
density distribution with a normalized spline kernel (“gravitational
softening”).

To implement our algorithm, we take advantage of the tree-
walk already build in GADGET-2, computing self interactions dur-
ing the calculation of the gravitational interactions. For this to work

Figure 1. Fraction of the expected total number of interactions that are com-
puted in our test simulation as a function of the self-interaction smoothing
length. The self-interaction cross section for each run is shown in units of
cm2/g in the legend. The code converges to the expected number of interac-
tions when the smoothing length approaches the background inter-particle
separation, i.e. when hsi(ρbg/mp)1/3 ! 0.2.

we have to modify the opening criterion such that nodes are opened
if they are able to have particles closer than 2hsi from a target scat-
terer (or hi + hj if particles have different self-interaction smooth-
ing lengths). When computing the probability of interaction we use
the same spline kernel used in GADGET-2 (Monaghan & Lattanzio
1985), defined as

W (r, h) =
8

πh3
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If a pair interacts we give both particles a kick consistent with
an elastic scattering that is isotropic in the center of mass frame.
The post-scatter particle velocities are

v
′
0 = vc +

m1

m0 +m1
V e,

v
′
1 = vc −

m0

m0 +m1
V e, (9)

where vc is the center of mass velocity, V is the relative speed of
the particles (conserved for elastic collisions) and e is a randomly
chosen direction.

The time-step criterion is also modified to assure that the scat-
tering probability for any pair of particles is small, P = Γ δt <<
1. An individual particle time-step is decreased by a factor of 2 if
during the last tree-walk the maximum probability of interaction for
any pair involving such a particle was Pmax > 0.2. Once a particle
time-step is modified due to the previous restriction, if Pmax < 0.1
for such a particle and its current time-step is smaller than the one
given by the standard criterion on GADGET-2, we increase it by a
factor of 2.

3 TEST OF THE SIDM IMPLEMENTATION

Before performing cosmological simulations, we carried out a con-
trolled test of the implementation in order to make sure the scatter-
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Self-Interacting Dark Matter Simulations I 25

Figure B1. Distribution of the post-scatter velocity magnitudes. From conservation of energy it is only possible to have particles with velocities > vs if they
have interacted multiple times, this is not included in our calculation of the theoretical distribution but it is allowed in our simulation, hence one can observe a
tail for velocities > vs on the distributions of both types of particle velocities, but not on the theoretical distribution.

Figure B2.Distributions of the post-scatter velocities along the θ-directions. It is evident that most of the particles are scattered towards the θ = 45◦ directions,
i.e. forming a 45◦ angle with vs. Note that the distributions resulting from the simulation in the left panel are higher that expected for θ <∼ 20◦ . This is
because multiple scatters are possible in the simulation and they are not considered in the calculations of the theoretical histograms. We demonstrate this by
showing in the right panel the distributions from the simulation when we exclude any particles with v > vs, excluding that way any particles that we know
have interacted multiple times and bringing the distributions from the simulation to a better agreement with the theory.
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Figure B3. Distributions of the velocities along the φ-directions. The flat distributions show that the results are symmetric about the direction of motion, i.e.
the z-axis.
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Self-Interacting Dark Matter Simulations I 25

Figure B1. Distribution of the post-scatter velocity magnitudes. From conservation of energy it is only possible to have particles with velocities > vs if they
have interacted multiple times, this is not included in our calculation of the theoretical distribution but it is allowed in our simulation, hence one can observe a
tail for velocities > vs on the distributions of both types of particle velocities, but not on the theoretical distribution.

Figure B2.Distributions of the post-scatter velocities along the θ-directions. It is evident that most of the particles are scattered towards the θ = 45◦ directions,
i.e. forming a 45◦ angle with vs. Note that the distributions resulting from the simulation in the left panel are higher that expected for θ <∼ 20◦ . This is
because multiple scatters are possible in the simulation and they are not considered in the calculations of the theoretical histograms. We demonstrate this by
showing in the right panel the distributions from the simulation when we exclude any particles with v > vs, excluding that way any particles that we know
have interacted multiple times and bringing the distributions from the simulation to a better agreement with the theory.
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Constraints from: core sizes & densities
Predictions vs. Observations Constraining Self-Interacting Dark Matter with the Milky Way’s dwarf spheroidals 3

Figure 2. The circular velocity profiles at z = 0 encompassing the 1st and
3rd quartiles of the distribution of the 15 subhaloes with the largest values
of Vmax(z = 0). The symbols with error bars are estimates of the circu-
lar velocity within the half-light radii for 9 MW dSphs (Walker et al. 2009;
Wolf et al. 2010). Clearly, the most massive CDM subhaloes are inconsis-
tent with the kinematics of the MW dSphs. SIDM can alleviate this problem
only for a constant scattering cross-section �T /m�1 cm2 g�1 (SIDM10
and SIDM1) or if it has a velocity dependence (vdSIDMa and vdSIDMb).
Current constraints from clusters put an upper limit to the constant cross
section case close to �T /m�0.1 cm2 g�1 (SIDM0.1). This value is too
low to solve the too big to fail problem. The observational data in the bot-
tom right can be fitted by lower mass subhaloes, not shown here since they
are affected by the limited resolution of our simulations.

of the circular velocity) within 300 kpc halocentric distance. The
symbols with error bars correspond to estimates of the circular
velocity within the half-light radii of the sample of 9 MW dSphs
used by Boylan-Kolchin et al. (2011, 2012). Since current data for
the stars in the dSphs provide an incomplete description of the 6-
dimensional phase-space distribution, the derived mass profiles are
typically degenerate with the velocity anisotropy profile. However,
the uncertainty in mass that is due to this degeneracy is minimised
near the half-light radius, where Jeans models tend to give the same
value of enclosed mass regardless of anisotropy (e.g. Strigari et al.
2007; Walker et al. 2009; Wolf et al. 2010). Observations can then
be used to constrain the maximum dark matter density within this
radius. CDM clearly predicts a population of massive subhaloes
that is inconsistent with all the 9 dSphs, whereas for SIDM this
problem disappears as long as ⇥T /m�1 cm2 g�1 on dSph scales.
The currently allowed case with ⇥T /m=0.1 cm2 g�1 is very close
to CDM, only reducing slightly the inner part of the subhalo veloc-
ity profiles. On the contrary, the vdSIDM models clearly solve the
too big to fail problem. We note that the extent of the too big to fail
problem in CDM depends on the mass of the MW halo, if it is in
the low end of current estimates, ⇥1012 M�, the problem may be
resolved (e.g. Wang et al. 2012), although a low halo mass may gen-
erate other difficulties such as explaining the presence of the Mag-
ellanic Clouds. In the context of SIDM, the lower the mass of the
MW halo, the weaker the argument against ⇥T /m=0.1 cm2 g�1.

A simple statistical test of the agreement between the subhalo
distributions of two models and the 9 dSphs is to compute the chi-
square difference associated to the likelihood of having n+(n�)
data points above (below) the median of the distribution of each
model. Assuming that the probability distribution of finding n±

data points is Poissonian:

�⇤2 = 2 (ln(n+
1 ! n

�
1 !)� ln(n+

2 ! n
�
2 !)). (2)

Comparing SIDM1 and the vdSIDM models with SIDM0.1,
the difference is driven solely by Draco with the former pre-
ferred over the latter with �⇤2⇥4.4 (2.1⇥). Using an interpo-
lation of our three constant cross section cases, we estimate that
⇥T /m⇥0.6 cm2 g�1 is the minimum value for which �⇤2 = 0
relative to SIDM1.

To show the typical core size and central densities that are pre-
dicted by the different SIDM models, we plot in Fig. 3 the density
profile of the 15 subhaloes with the largest Vmax(z = 0) values.
A value of ⇥T /m⇥1 cm2 g�1 is needed for a constant cross sec-
tion SIDM model to mimic the effect of the vdSIDM models and
produce ⇥1 kpc cores with central densities of O(0.1M� pc�3).
If the transfer cross section is reduced to 0.1 cm2 g�1, then the
subhaloes are only slightly less dense than in CDM, having cores
(central densities) that are at least twice smaller (higher) than those
in the other SIDM cases.

VZL showed that the SIDM10 and vdSIDM models have con-
vergent density and circular velocity profiles within the central den-
sity core; we have found the same for SIDM1 and to lesser extent
for SIDM0.1. Convergence is harder to achieve for CDM since, at a
fixed radius, the two-body relaxation time is shorter than for SIDM
(due to the reduced densities in the latter case). Power et al. (2003)
showed that the density profile converges at a given radius when
the two-body relaxation time is larger than the Hubble time at this
radius. At the resolution level of our simulations, the convergence
radius for CDM is ⇥600 pc, which implies that the CDM circular
velocity and density profiles shown in Figs. 2 and 3 underestimate
the true dark matter content within ⇥600 pc (Springel et al. 2008),
whereas for SIDM is at least half of this value. In any case, the ex-
pectation is that if the density profile of SIDM0.1 has not converged
yet, higher resolution would drive it towards higher densities, not
lower, bringing it even closer to CDM (this is a trend confirmed for
the cases analysed in VZL, see their Fig. 9).

By using the fact that some MW dSphs have chemo-
dynamically distinct stellar subcomponents that independently
trace the same gravitational potential, Walker & Peñarrubia (2011)
showed that it is possible to constrain the slopes of their inner mass
profiles. They found that Fornax and Sculptor are consistent with
cored density profiles while cuspy profiles with � ⇤ r�1 are ruled
out with a significance � 96% and � 99%, respectively. We use
this method to test the consistency of the SIDM models explored
here. We found that all SIDM models, except for SIDM0.1, are
well fitted by the following three-parameter formula:

�(r) =
�0 r

3
s

(r + rc) (r2 + r2s)
, (3)

which is similar to the Burkert profile (Burkert 1995) but with two
scale radii rs and rc. The remaining case, SIDM0.1, is better fitted
by:

�(r) =
�0 r

3
s

(r + rc) (r + rs)2
. (4)

Using these formulae, we found the best fit parameters for the mas-
sive subhaloes in each of the SIDM models. Such fits are restricted
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Figure 3. Density profile of the 15 subhaloes with the largest Vmax(z =
0) values within CDM and different SIDM models (see Fig. 1). We
show the median and 1st and 3rd quartiles of the subhalo distribution
for each case. The velocity-dependent SIDM cases produce cores of ap-
proximately 600 pc. Of the constant cross section SIDM models we ex-
plored, the one that is currently allowed by cluster constraints, SIDM0.1
(�T /m=0.1 cm2 g�1), only deviates slightly from CDM; the associated
core sizes are less than 300 pc.

to a radial range between the softening length of our simulations
⇥ 120 pc and the radius where tidal stripping has made the outer
logarithmic slope of the density profile steeper than �3. The latter
restriction is of relevance only for four subhaloes that are affected
significantly by tidal stripping within ⇥ 5 kpc. Two of these are
clearly affected within ⇥ 1 kpc and should likely be removed in a
more detailed analysis; they are the least consistent with the data.
To find the best fit parameters we minimise:

Q2 =
1

Nbins

�

i

(ln�i(ri)� ln�fit(ri))
2 , (5)

where the sum goes over all radial bins.Thus defined, Q gives an
estimate of the goodness of the fit. In Table 1, we give the best
fit parameters for the median of the subhalo population for each
SIDM model (except for SIDM10 which has been ruled out). We
note that Peñarrubia et al. (2012) already used Eq. (4) to estimate
rc � 1 kpc for Fornax and Sculptor. Cores of this size are too large
to be consistent with most of the subhaloes in SIDM0.1.

To test the consistency of the different SIDM models, we
use the parameters of the fits to compute the slope of the inner
mass profile between the pair of half light radii (the median like-
lihood values) of the two distinct stellar subcomponents in For-
nax and Sculptor. We then test whether this slope is as steep as
the lower limit set by the data. The confidence level at which
a given slope is said to be excluded is determined by the frac-
tion of the posterior distribution fp of allowed slopes that are
larger. For ⇥T /m=0.1 cm2 g�1, all but 2 subhaloes are excluded
at > 95(90)% confidence for Fornax (Sculptor); the remaining two
subhaloes have values of fp � 0.86(0.81) for Fornax (Sculptor).
On the contrary, the other SIDM models (except for SIDM10 that
was not analysed) are clearly more consistent with the data with

Name ⇢(r = 200 pc)[M⇥ kpc�3] rs[kpc] rc[kpc]

vdSIDMa 1.37� 108 0.94 0.75

vdSIDMb 1.37� 108 0.94 0.73

SIDM1 1.16� 108 0.96 1.33

SIDM0.1 2.31� 108 0.97 0.41

Table 1. Best fit parameters for the median of the SIDM density profiles of
the 15 subhaloes with the largest Vmax(z = 0) values. The last two have
a constant cross section while the others have a velocity-dependent cross
section (see Fig. 1). SIDM1.0 is likely ruled out by cluster observations
(see Rocha et al. 2012). The density profile used for the fits is given by
Eq. (3) for SIDM1 and the vdSIDM models, and by Eq. (4) for SIDM0.1.

only four subhaloes excluded at 90% confidence for Fornax (five of
the subhaloes actually have fp < 0.8), while only three subhaloes
are excluded at > 80% confidence for Sculptor. We found no clear
preference between the vdSIDM models and the case with constant
⇥T /m=1 cm2 g�1. To consider the impact of the non-spherical
morphologies of Fornax and Sculptor, we repeated the analysis for
elliptical rather than circular radii for the stars used to estimate the
slope of the mass profiles (see sect. 6.1 of Walker & Peñarrubia
2011). We find that for all models Fornax becomes slightly more
exclusive while Sculptor is considerably less exclusive.

3 DISCUSSION AND CONCLUSIONS

Self-Interacting Dark Matter (SIDM) offers a promising solution
to the dwarf-scale challenges faced by the otherwise-remarkably
successful Cold Dark Matter (CDM) model. The original idea of a
velocity-independent, elastically scattering cross section died off
quickly, mostly due to the apparently stringent constraint found
by Miralda-Escudé (2002) requiring that the cross-section per unit
mass was ⇥T /m⇤0.02 cm2 g�1. This value is uninteresting, with
earlier estimates requiring ⇥T /m to be at least of O(1 cm2 g�1)
to create⇥1 kpc cores in dwarf-size haloes (Yoshida et al. 2000;
Davé et al. 2001). Peter et al. (2012) have recently revised earlier
constraints on collisional dark matter and found them to be over-
estimated by over an order of magnitude; the current constraint
is ⇥T /m⇥0.1 cm2 g�1. Moreover, these authors have revived, in
a companion paper (Rocha et al. 2012), the velocity-independent
SIDM model by suggesting that a value of ⇥T /m=0.1 cm2 g�1 is
seemingly consistent with the inner structure of the MW dSphs.

Motivated by the prospect of a viable constant cross section
SIDM model, we investigate the claims from Rocha et al. (2012)
using high resolution cosmological SIDM simulations of a MW-
size halo. Contrary to Rocha et al. (2012), we are able to resolve
the sub-kpc structure of the massive subhalo population to suffi-
ciently small radii for comparison with the MW dSphs. We find that
a velocity-independent SIDM model is consistent with the kinemat-
ics of dSphs only if ⇥T /m⇤1 cm2 g�1 (see Fig. 2), i.e., a value of
this order is required to solve the too big to fail problem (Boylan-
Kolchin et al. 2011, 2012). If the cross section is lower by an order
of magnitude, the subhalo population is still too dense to be con-
sistent with the MW dSphs. On the other hand, as shown already
in VZL, velocity-dependent SIDM models with a Yukawa-like in-
teraction (as proposed in Loeb & Weiner 2011, see Fig. 1) success-
fully solve the too big to fail problem.
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Figure 2. The circular velocity profiles at z = 0 encompassing the 1st and
3rd quartiles of the distribution of the 15 subhaloes with the largest values
of Vmax(z = 0). The symbols with error bars are estimates of the circu-
lar velocity within the half-light radii for 9 MW dSphs (Walker et al. 2009;
Wolf et al. 2010). Clearly, the most massive CDM subhaloes are inconsis-
tent with the kinematics of the MW dSphs. SIDM can alleviate this problem
only for a constant scattering cross-section �T /m�1 cm2 g�1 (SIDM10
and SIDM1) or if it has a velocity dependence (vdSIDMa and vdSIDMb).
Current constraints from clusters put an upper limit to the constant cross
section case close to �T /m�0.1 cm2 g�1 (SIDM0.1). This value is too
low to solve the too big to fail problem. The observational data in the bot-
tom right can be fitted by lower mass subhaloes, not shown here since they
are affected by the limited resolution of our simulations.

of the circular velocity) within 300 kpc halocentric distance. The
symbols with error bars correspond to estimates of the circular
velocity within the half-light radii of the sample of 9 MW dSphs
used by Boylan-Kolchin et al. (2011, 2012). Since current data for
the stars in the dSphs provide an incomplete description of the 6-
dimensional phase-space distribution, the derived mass profiles are
typically degenerate with the velocity anisotropy profile. However,
the uncertainty in mass that is due to this degeneracy is minimised
near the half-light radius, where Jeans models tend to give the same
value of enclosed mass regardless of anisotropy (e.g. Strigari et al.
2007; Walker et al. 2009; Wolf et al. 2010). Observations can then
be used to constrain the maximum dark matter density within this
radius. CDM clearly predicts a population of massive subhaloes
that is inconsistent with all the 9 dSphs, whereas for SIDM this
problem disappears as long as ⇥T /m�1 cm2 g�1 on dSph scales.
The currently allowed case with ⇥T /m=0.1 cm2 g�1 is very close
to CDM, only reducing slightly the inner part of the subhalo veloc-
ity profiles. On the contrary, the vdSIDM models clearly solve the
too big to fail problem. We note that the extent of the too big to fail
problem in CDM depends on the mass of the MW halo, if it is in
the low end of current estimates, ⇥1012 M�, the problem may be
resolved (e.g. Wang et al. 2012), although a low halo mass may gen-
erate other difficulties such as explaining the presence of the Mag-
ellanic Clouds. In the context of SIDM, the lower the mass of the
MW halo, the weaker the argument against ⇥T /m=0.1 cm2 g�1.

A simple statistical test of the agreement between the subhalo
distributions of two models and the 9 dSphs is to compute the chi-
square difference associated to the likelihood of having n+(n�)
data points above (below) the median of the distribution of each
model. Assuming that the probability distribution of finding n±

data points is Poissonian:

�⇤2 = 2 (ln(n+
1 ! n

�
1 !)� ln(n+

2 ! n
�
2 !)). (2)

Comparing SIDM1 and the vdSIDM models with SIDM0.1,
the difference is driven solely by Draco with the former pre-
ferred over the latter with �⇤2⇥4.4 (2.1⇥). Using an interpo-
lation of our three constant cross section cases, we estimate that
⇥T /m⇥0.6 cm2 g�1 is the minimum value for which �⇤2 = 0
relative to SIDM1.

To show the typical core size and central densities that are pre-
dicted by the different SIDM models, we plot in Fig. 3 the density
profile of the 15 subhaloes with the largest Vmax(z = 0) values.
A value of ⇥T /m⇥1 cm2 g�1 is needed for a constant cross sec-
tion SIDM model to mimic the effect of the vdSIDM models and
produce ⇥1 kpc cores with central densities of O(0.1M� pc�3).
If the transfer cross section is reduced to 0.1 cm2 g�1, then the
subhaloes are only slightly less dense than in CDM, having cores
(central densities) that are at least twice smaller (higher) than those
in the other SIDM cases.

VZL showed that the SIDM10 and vdSIDM models have con-
vergent density and circular velocity profiles within the central den-
sity core; we have found the same for SIDM1 and to lesser extent
for SIDM0.1. Convergence is harder to achieve for CDM since, at a
fixed radius, the two-body relaxation time is shorter than for SIDM
(due to the reduced densities in the latter case). Power et al. (2003)
showed that the density profile converges at a given radius when
the two-body relaxation time is larger than the Hubble time at this
radius. At the resolution level of our simulations, the convergence
radius for CDM is ⇥600 pc, which implies that the CDM circular
velocity and density profiles shown in Figs. 2 and 3 underestimate
the true dark matter content within ⇥600 pc (Springel et al. 2008),
whereas for SIDM is at least half of this value. In any case, the ex-
pectation is that if the density profile of SIDM0.1 has not converged
yet, higher resolution would drive it towards higher densities, not
lower, bringing it even closer to CDM (this is a trend confirmed for
the cases analysed in VZL, see their Fig. 9).

By using the fact that some MW dSphs have chemo-
dynamically distinct stellar subcomponents that independently
trace the same gravitational potential, Walker & Peñarrubia (2011)
showed that it is possible to constrain the slopes of their inner mass
profiles. They found that Fornax and Sculptor are consistent with
cored density profiles while cuspy profiles with � ⇤ r�1 are ruled
out with a significance � 96% and � 99%, respectively. We use
this method to test the consistency of the SIDM models explored
here. We found that all SIDM models, except for SIDM0.1, are
well fitted by the following three-parameter formula:

�(r) =
�0 r

3
s

(r + rc) (r2 + r2s)
, (3)

which is similar to the Burkert profile (Burkert 1995) but with two
scale radii rs and rc. The remaining case, SIDM0.1, is better fitted
by:

�(r) =
�0 r

3
s

(r + rc) (r + rs)2
. (4)

Using these formulae, we found the best fit parameters for the mas-
sive subhaloes in each of the SIDM models. Such fits are restricted
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Figure 3. Density profile of the 15 subhaloes with the largest Vmax(z =
0) values within CDM and different SIDM models (see Fig. 1). We
show the median and 1st and 3rd quartiles of the subhalo distribution
for each case. The velocity-dependent SIDM cases produce cores of ap-
proximately 600 pc. Of the constant cross section SIDM models we ex-
plored, the one that is currently allowed by cluster constraints, SIDM0.1
(�T /m=0.1 cm2 g�1), only deviates slightly from CDM; the associated
core sizes are less than 300 pc.

to a radial range between the softening length of our simulations
⇥ 120 pc and the radius where tidal stripping has made the outer
logarithmic slope of the density profile steeper than �3. The latter
restriction is of relevance only for four subhaloes that are affected
significantly by tidal stripping within ⇥ 5 kpc. Two of these are
clearly affected within ⇥ 1 kpc and should likely be removed in a
more detailed analysis; they are the least consistent with the data.
To find the best fit parameters we minimise:

Q2 =
1

Nbins

�

i

(ln�i(ri)� ln�fit(ri))
2 , (5)

where the sum goes over all radial bins.Thus defined, Q gives an
estimate of the goodness of the fit. In Table 1, we give the best
fit parameters for the median of the subhalo population for each
SIDM model (except for SIDM10 which has been ruled out). We
note that Peñarrubia et al. (2012) already used Eq. (4) to estimate
rc � 1 kpc for Fornax and Sculptor. Cores of this size are too large
to be consistent with most of the subhaloes in SIDM0.1.

To test the consistency of the different SIDM models, we
use the parameters of the fits to compute the slope of the inner
mass profile between the pair of half light radii (the median like-
lihood values) of the two distinct stellar subcomponents in For-
nax and Sculptor. We then test whether this slope is as steep as
the lower limit set by the data. The confidence level at which
a given slope is said to be excluded is determined by the frac-
tion of the posterior distribution fp of allowed slopes that are
larger. For ⇥T /m=0.1 cm2 g�1, all but 2 subhaloes are excluded
at > 95(90)% confidence for Fornax (Sculptor); the remaining two
subhaloes have values of fp � 0.86(0.81) for Fornax (Sculptor).
On the contrary, the other SIDM models (except for SIDM10 that
was not analysed) are clearly more consistent with the data with

Name ⇢(r = 200 pc)[M⇥ kpc�3] rs[kpc] rc[kpc]

vdSIDMa 1.37� 108 0.94 0.75

vdSIDMb 1.37� 108 0.94 0.73

SIDM1 1.16� 108 0.96 1.33

SIDM0.1 2.31� 108 0.97 0.41

Table 1. Best fit parameters for the median of the SIDM density profiles of
the 15 subhaloes with the largest Vmax(z = 0) values. The last two have
a constant cross section while the others have a velocity-dependent cross
section (see Fig. 1). SIDM1.0 is likely ruled out by cluster observations
(see Rocha et al. 2012). The density profile used for the fits is given by
Eq. (3) for SIDM1 and the vdSIDM models, and by Eq. (4) for SIDM0.1.

only four subhaloes excluded at 90% confidence for Fornax (five of
the subhaloes actually have fp < 0.8), while only three subhaloes
are excluded at > 80% confidence for Sculptor. We found no clear
preference between the vdSIDM models and the case with constant
⇥T /m=1 cm2 g�1. To consider the impact of the non-spherical
morphologies of Fornax and Sculptor, we repeated the analysis for
elliptical rather than circular radii for the stars used to estimate the
slope of the mass profiles (see sect. 6.1 of Walker & Peñarrubia
2011). We find that for all models Fornax becomes slightly more
exclusive while Sculptor is considerably less exclusive.

3 DISCUSSION AND CONCLUSIONS

Self-Interacting Dark Matter (SIDM) offers a promising solution
to the dwarf-scale challenges faced by the otherwise-remarkably
successful Cold Dark Matter (CDM) model. The original idea of a
velocity-independent, elastically scattering cross section died off
quickly, mostly due to the apparently stringent constraint found
by Miralda-Escudé (2002) requiring that the cross-section per unit
mass was ⇥T /m⇤0.02 cm2 g�1. This value is uninteresting, with
earlier estimates requiring ⇥T /m to be at least of O(1 cm2 g�1)
to create⇥1 kpc cores in dwarf-size haloes (Yoshida et al. 2000;
Davé et al. 2001). Peter et al. (2012) have recently revised earlier
constraints on collisional dark matter and found them to be over-
estimated by over an order of magnitude; the current constraint
is ⇥T /m⇥0.1 cm2 g�1. Moreover, these authors have revived, in
a companion paper (Rocha et al. 2012), the velocity-independent
SIDM model by suggesting that a value of ⇥T /m=0.1 cm2 g�1 is
seemingly consistent with the inner structure of the MW dSphs.

Motivated by the prospect of a viable constant cross section
SIDM model, we investigate the claims from Rocha et al. (2012)
using high resolution cosmological SIDM simulations of a MW-
size halo. Contrary to Rocha et al. (2012), we are able to resolve
the sub-kpc structure of the massive subhalo population to suffi-
ciently small radii for comparison with the MW dSphs. We find that
a velocity-independent SIDM model is consistent with the kinemat-
ics of dSphs only if ⇥T /m⇤1 cm2 g�1 (see Fig. 2), i.e., a value of
this order is required to solve the too big to fail problem (Boylan-
Kolchin et al. 2011, 2012). If the cross section is lower by an order
of magnitude, the subhalo population is still too dense to be con-
sistent with the MW dSphs. On the other hand, as shown already
in VZL, velocity-dependent SIDM models with a Yukawa-like in-
teraction (as proposed in Loeb & Weiner 2011, see Fig. 1) success-
fully solve the too big to fail problem.
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From LoCuSS sample
Richard+ 2010 

Results from cosmological simulations - Halo shapes

We see surface density (or 
gravitational potentials) in 
projection.

Rocha et al. 2013
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14 Peter et al.

Figure 10. Same as Fig. 9 but with the line-of-sight along the intermediate axis of the halo. The ellipticities here are: CDM, e = 0.59; �/m = 0.1 cm2/g,
e = 0.38; �/m = 1 cm2/g, e = 0.32.

Figure 11. Ellipticity e (Eq. 8) of halos fit with dPIE profiles for three different projections. The solid black histograms show e values for the five most
massive CDM halos in the 50 h�1Mpc simulation, the cyan histogram shows the same halos in the SIDM

1

simulation, and the green hatched histogram is for
SIDM

0.1

. The dark blue points with uncertainties show the best-fit ellipticities and their 1-� uncertainties from dPIE modeling of the five LoCuSS clusters
with �

0

and r
core

similar to those of the simulated clusters (Richard et al. 2010).
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Figure 3. Large-scale characteristics Left: Dark matter two-point correlation functions from our CDM-50 (CDM-25) and SIDM1-50 (SIDM1-25) simulations
in black (grey) and blue (cyan) colors respectively. There are no noticeable difference between the CDM and SIDM1 dark matter clustering over the scales
plotted. Right: Cumulative number density of dark matter halos as a function of their maximum circular velocity (Vmax) at different redshifts for our CDM-50
(solid) and SIDM1-50 (dashed) simulations. There are no significant differences in the Vmax functions of CDM and SIDM1 at any redshift.

§5.2 but of course this is expected. The SIDM models we explore
do not have appreciable rates of interaction for densities outside the
cores of dark matter halos. The upper panels of Figure 2 provide a
visual reminder that the SIDM models we consider are effectively
identical to CDM on larges scales.

The differences between CDM and SIDM become apparent
only when one considers the internal structure of individual ha-
los. The lower panels of Figure 2 provide side-by-side images of a
Milky-Way mass halo (Z12) simulated with CDM (left) and SIDM1

(right). SIDM tends to make the cores of halos less dense and ki-
netically hotter (see §5.3) and these two differences are enhanced
multiplicatively in the phase-space density renderings. The central
regions of the host halo are also slightly rounder in the SIDM case
(Peter et al. 2012). Importantly, the difference in substructure char-
acteristics are minimal, especially at larger radii. We return to a
quantitative description of substructure differences in §5.4.

5.2 Large Scale Structure and Halo Abundances

Figure 3 provides a quantitative comparison of both the clustering
properties (left) and halo abundance evolution (right) between our
full-box CDM and SIDM1 simulations. The left panel shows the
two-point function of dark matter particles in both cosmological
runs for CDM and SIDM1. There are no discernible differences
between SIDM and CDM over the scales plotted, though of course
the different box sizes (and associated resolutions) mean that the
boxes themselves only overlap for a limited range of scales. For
a given set of initial conditions, however, SIDM and CDM give
identical results.

The right panel of Figure 3 shows the cumulative number
density of dark-matter halos (including subhalos) as a function of
their peak circular velocity (Vmax) for the CDM-50 (solid) and
SIDM1-50 (dashed) simulations at various redshifts. Remarkably,
this comparison shows no significant difference either – indicat-
ing that SIDM with cross sections as large as 1 cm2/g does not
strongly affect the maximum circular velocities of individual halos.

The two panels of Figure 3 demonstrate that for large-scale com-
parisons, including analyses involving field halo mass functions,
SIDM and CDM yield identical results. The implication is that ob-
servations of large-scale structure are just as much a “verification”
of SIDM as they are of CDM.

5.3 Halo Structure

Before presenting statistics on halo structure, we focus on six well
resolved halos that span our full mass range Mvir = 5 × 1011 −
2 × 1014 M!, selected from our full simulation suite, including
our two zoom-simulation halos (Z12 and Z11). Figures 4 through
6 show radial profiles for the density, circular velocity and velocity
dispersion for all three dark matter cases. In each figure, black cir-
cles correspond to CDM, green triangles to SIDM0.1, and blue stars
to SIDM1. All profiles are shown down to the innermost resolved
radius for which the average two-body relaxation time roughly
matches the age of the Universe (Power et al. 2003).

We begin with the density profiles of halos shown in the six-
panel Figure 4. For each halo in the CDM run we have fit an NFW
profile (Navarro et al. 1997) to its radial density structure:

ρNFW(r) =
ρs r

3
s

r(rs + r)2
, (11)

and recorded its corresponding scale radius rs. The CDM-fit rs
value for each halo is given in its associated panel along with the
halo virial mass. The radial profiles for each halo (in both the CDM
and SIDM runs) are normalized with respect to the CDM rs value
in the plot. This allows our full range of halo masses to be plotted
on identical axes.

The SIDM versions of each halo show remarkable similar-
ity to their CDM counterparts at large radii. However, the SIDM1

cases clearly begin to roll towards constant-density cores at small
radii. The best resolved halos in the SIDM0.1 runs also demonstrate
lower central densities compared to CDM, though the differences
are at the factor of ∼ 2 level even in our best resolved systems.
Clearly, higher resolution simulations will be required in order to
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Figure 3. Large-scale characteristics Left: Dark matter two-point correlation functions from our CDM-50 (CDM-25) and SIDM1-50 (SIDM1-25) simulations
in black (grey) and blue (cyan) colors respectively. There are no noticeable difference between the CDM and SIDM1 dark matter clustering over the scales
plotted. Right: Cumulative number density of dark matter halos as a function of their maximum circular velocity (Vmax) at different redshifts for our CDM-50
(solid) and SIDM1-50 (dashed) simulations. There are no significant differences in the Vmax functions of CDM and SIDM1 at any redshift.

§5.2 but of course this is expected. The SIDM models we explore
do not have appreciable rates of interaction for densities outside the
cores of dark matter halos. The upper panels of Figure 2 provide a
visual reminder that the SIDM models we consider are effectively
identical to CDM on larges scales.

The differences between CDM and SIDM become apparent
only when one considers the internal structure of individual ha-
los. The lower panels of Figure 2 provide side-by-side images of a
Milky-Way mass halo (Z12) simulated with CDM (left) and SIDM1

(right). SIDM tends to make the cores of halos less dense and ki-
netically hotter (see §5.3) and these two differences are enhanced
multiplicatively in the phase-space density renderings. The central
regions of the host halo are also slightly rounder in the SIDM case
(Peter et al. 2012). Importantly, the difference in substructure char-
acteristics are minimal, especially at larger radii. We return to a
quantitative description of substructure differences in §5.4.

5.2 Large Scale Structure and Halo Abundances

Figure 3 provides a quantitative comparison of both the clustering
properties (left) and halo abundance evolution (right) between our
full-box CDM and SIDM1 simulations. The left panel shows the
two-point function of dark matter particles in both cosmological
runs for CDM and SIDM1. There are no discernible differences
between SIDM and CDM over the scales plotted, though of course
the different box sizes (and associated resolutions) mean that the
boxes themselves only overlap for a limited range of scales. For
a given set of initial conditions, however, SIDM and CDM give
identical results.

The right panel of Figure 3 shows the cumulative number
density of dark-matter halos (including subhalos) as a function of
their peak circular velocity (Vmax) for the CDM-50 (solid) and
SIDM1-50 (dashed) simulations at various redshifts. Remarkably,
this comparison shows no significant difference either – indicat-
ing that SIDM with cross sections as large as 1 cm2/g does not
strongly affect the maximum circular velocities of individual halos.

The two panels of Figure 3 demonstrate that for large-scale com-
parisons, including analyses involving field halo mass functions,
SIDM and CDM yield identical results. The implication is that ob-
servations of large-scale structure are just as much a “verification”
of SIDM as they are of CDM.

5.3 Halo Structure

Before presenting statistics on halo structure, we focus on six well
resolved halos that span our full mass range Mvir = 5 × 1011 −
2 × 1014 M!, selected from our full simulation suite, including
our two zoom-simulation halos (Z12 and Z11). Figures 4 through
6 show radial profiles for the density, circular velocity and velocity
dispersion for all three dark matter cases. In each figure, black cir-
cles correspond to CDM, green triangles to SIDM0.1, and blue stars
to SIDM1. All profiles are shown down to the innermost resolved
radius for which the average two-body relaxation time roughly
matches the age of the Universe (Power et al. 2003).

We begin with the density profiles of halos shown in the six-
panel Figure 4. For each halo in the CDM run we have fit an NFW
profile (Navarro et al. 1997) to its radial density structure:

ρNFW(r) =
ρs r

3
s

r(rs + r)2
, (11)

and recorded its corresponding scale radius rs. The CDM-fit rs
value for each halo is given in its associated panel along with the
halo virial mass. The radial profiles for each halo (in both the CDM
and SIDM runs) are normalized with respect to the CDM rs value
in the plot. This allows our full range of halo masses to be plotted
on identical axes.

The SIDM versions of each halo show remarkable similar-
ity to their CDM counterparts at large radii. However, the SIDM1

cases clearly begin to roll towards constant-density cores at small
radii. The best resolved halos in the SIDM0.1 runs also demonstrate
lower central densities compared to CDM, though the differences
are at the factor of ∼ 2 level even in our best resolved systems.
Clearly, higher resolution simulations will be required in order to
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Figure 11. Burkert scale radius in SIDM1 halos vs. the NFW scale radius
in their CDM counterparts. Points and labels are the same as in Figure 10.
There is a one-to-one correlation indicating that the core size of SIDM1

halos scales the same as the scale radius of CDM halos with Vmax

cated before, the scaling relation for the central density should be
interpreted with care given the large scatter. Given the tight corre-
lation between core radius and rs, it is possible that the substantial
scatter in the central density arises in large part due to the scat-
ter introduced by the assembly history in the concentration-mass
relation. This has important implications for fitting to the rotation
velocity profiles of low-surface brightness spirals (Kuzio de Naray
et al. 2010) and deserves more work.

The simple model constructed above also provides insight into
the core collapse time scales. In particular, as long as the outer part
(region outside r1) dominates the potential well and sets the aver-
age central temperature (or the total kinetic energy in the core), we
do not expect core collapse. This is simply because core collapse
requires uncontrolled decrease in temperature, which is prohibited
here. Once r1 moves out well beyond rmax or to the virial radius,
there is significant loss of particles and core collapse may occur if
there are no further major mergers. The time scale for this process
is much longer than the age of the universe for σ/m = 1 cm2/g
because the inner core is at r1 < rs after 10 Gyr for this self-
interaction strength and we see no evidence for significant mass
loss.

8 OBSERVATIONAL COMPARISONS

The goal of this section is to discuss our results in comparison to
observationally inferred properties of dark-matter density profiles.
In particular, we will focus on the core densities and core sizes. §8.1
presents our expectations for SIDM1 and SIDM0.1. Our predictions
for σ/m = 1 cm2/g are anchored robustly to our simulations,
though they do require some extrapolation beyond the mass range
directly probed by our simulations (Vmax = 130 − 860 km/s).
For σ/m = 0.1 cm2/g the predictions are much less secure be-
cause the associated core sizes are of order our resolution limit,
thus we rely on our our analytic model more directly here. In §8.2,
we discuss our predictions in light of observations of dark-matter
halos for a wide range of halo masses. In §8.3, we discuss our re-

Figure 12. Burkert scale density vs. Vmax. Points and labels are the same
as in Figure10. The trend in the ρb − Vmax relation is not as clear as for
the rb − Vmax relation, with a scatter of up to a factor of 3.

sults on subhalos in the context of past work and constraints on
SIDM based on subhalo properties.

Before proceeding with this discussion we would like to clar-
ify how we quantify core sizes. In this work, we have fit the
σ/m = 1 cm2/g halos with Burkert density profiles. However,
many observational constraints on cores on galaxy scales come
from fitting pseudo-isothermal density profiles with core size rpi
to data (e.g., Simon et al. 2005; Kuzio de Naray et al. 2008), al-
though some constraints do come from Burkert modeling (Salucci
et al. 2012). We found that pseudo-isothermal density profiles also
give good fits to the inner regions of the SIDM1 halos, but Burkert
fits are better because of that profile’s ρ ∝ r−3 dependence at large
radii. For a pseudo-isothermal density profile (∝ 1/(r2c + r2)), the
density decreases to one-fourth the central density at 1.73 times its
core radius rc. Thus, as a crude approximation, one may convert
the Burkert radius to the equivalent pseudo-isothermal core radius
by multiplying by a factor of 0.58 (rc # rb/1.73).

8.1 Predicted Core Sizes and Central Densities in SIDM

8.1.1 SIDM with σ/m = 1 cm2/g.

The central properties of dark-matter halos have been inferred from
observations from tiny Milky Way dwarf spheroidal (dSph) galax-
ies (Vmax ! 50 km/s) to galaxy clusters (Vmax " 1000 km/s). If
we extrapolate the results from our set of SIDM1 simulations using
Eqs. (16)-(20) we predict that SIDM halos with σ/m = 1 cm2/g
would have the following (Burkert) core sizes and central densities:

For galaxy clusters (Vmax # 700− 1000 km/s):

rb # (95− 155) kpc ; ρb # (0.005 − 0.004)M"pc−3

For low-mass spirals (Vmax # 50− 130 km/s):

rb # (3− 10) kpc ; ρb # (0.02− 0.01)M"pc−3

For dwarf spheroidals galaxies (Vmax # 20− 50 km/s):

rb # (0.9− 3) kpc ; ρb # (0.04 − 0.02)M"pc
−3
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explain this striking behavior using an analytic model in the next
section.

The central densities in SIDM1 halos can be defined either as
the Burkert profiles scale density or as the density at the innermost
resolved radius. We have found that both definitions give similar
results with no significant differences. In Figure 12, we show how
the Burkert scale density ρb scales with Vmax. The trend in the
ρb − Vmax relation is not as strong as for the rb − Vmax relation,
with a scatter as large as about a factor of 3. We will come back
to the implications of this result in our discussion section (§8). The
relation that best fits our data is given by

ρb = 0.015M!/pc
3

(

Vmax

100 km/s

)−0.55

. (19)

If we fit toMvir instead of Vmax we get

ρb = 0.029M!/pc
3

(

Mvir

1010 M!

)−0.19

. (20)

We urge caution when using the above fits to the central densities
as it is likely to be affected by our small sample size given the
large scatter. The toy model discussed in the next section predicts
a slightly stronger scaling with Vmax . However, the typical densi-
ties of order 0.01M!/pc3 for galaxy halos and 0.001M!/pc

3 for
cluster halos (see Figure 12) are in line with the predictions of the
analytic model.

In this section we have presented scaling relations for the properties
of halos in our SIDM1 simulations. Our limited resolution allows
us to use only 52 halos spanning a modest mass range, from which
we throw out eight systems that are undergoing mergers. Admit-
tedly, this sample is not large enough to be definitive, especially
in regards to scatter. However, the strong correlation between the
SIDM core radius rb and the counterpart CDM scale radius rs is
clearly statistically significant and the general trends provide a use-
ful guide for tentative observational comparisons – a subject we
will return to in the final section below.

7 ANALYTIC MODEL TO EXPLAIN THE SCALING
RELATIONS

In this section we develop a simple model to understand the scal-
ing relations shown in §6. This model is based on identifying an
appropriate radius r1 within which self-interactions are effective
and demanding that the mass as well as the average velocity dis-
persion within this radius is set by the mass and the average ve-
locity dispersion (within the same radius) of the same halo in the
absence of self-scatterings. The mass loss due to scatterings in the
core should be insignificant because particles rarely get enough en-
ergy to escape and this implies that the mass within r1 should be
close to what it would have been in the absence of self-interactions.
This also implies that the potential outside r1 is unchanged from its
CDM model prediction, but tends to a constant value faster inside
r1. Within this set of approximations, the dominant effect due to
scatterings is to re-distribute kinetic energy in the core, while keep-
ing the total kinetic energy within r1 the same as it would have had
before self-interactions became important. We have looked at the
kinetic energy profiles in the best-resolved halos in our simulations
and have confirmed that this is indeed a good approximation. Note
that in this picture, there is a clear demarcation of time-scales such
that the inner halo structure (say r ! rs) is set (the same way as in
CDM model) well before self-interactions become important. For

Figure 9. rmax vs. Vmax for our combined sample of well resolved halos
from our SIDM1 and CDM simulations. Open symbols correspond to halos
for which the density profiles showed signs of being perturbed, thus they
were not included in the best fit of the relation. Small differences of about
10% exists in both Vmax and rmax, however the slope of Vmax-rmax re-
lation is unchanged from CDM to SIDM1.

cross sections much larger than what we are interested in here, this
need not hold.

To set up the model, we start by recalling that self-interactions
work to create an isothermal core (see Figure 6) that is isotropic
(both spatially and in velocity space). Using the spherical Jeans
equation, one can then see that for a system with these properties

v2rms,0 = 3σr(0)
2 = 2πξ−1Gρ(0)r20 , (21)

where we have defined r0 to be the expansion parameter such that
ρ(r)σr(r)2 = ρ(0)σr(0)2(1 − ξ(r/r0)2) when r " r0, and σr

is the radial velocity dispersion. The form of the Taylor expansion
for ρ(r)σr(r)

2 is dictated by the Jeans equation for density pro-
files that tend to a constant value, as may be readily ascertained
by taking the derivative of ρ(r)σr(r)

2. To fix r0, we will choose
it to be equivalent to the Burkert scale radius where the density is
one-fourth of the central density. The parameter ξ encapsulates un-
certainties from the profile and velocity dispersion anisotropy in the
outer parts of the halo. We test various models and find that a range
of 2-3 for ξ is largely consistent with most parameterizations and
hence we fix ξ = 2.5. If we specify the central velocity dispersion,
then with an additional constraint on the core region (i.e., r1), we
would be able to back out both the core radius and the core density.

We then set v2rms,0 equal to the average velocity dispersion
squared (i.e., two times kinetic energy divided by mass) within
the region r1 in the absence of self-interactions. This basically de-
mands that the kinetic energy within r1 is unchanged from the value
it would have had in the absence of self-interactions. Note, how-
ever, that we are setting the average velocity dispersion squared
equal to v2rms,0 and not the corresponding average in the SIDM
halo. This is an approximation, but one that is degenerate with
choosing the ξ parameter.

To finish specifying this model, we need a density profile for
the region inside r1. A Burkert profile has a velocity dispersion pro-
file (assuming isotropy) that asymptotes very slowly to the central
dispersion. For small radii, the radial dispersion profile is slowly
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Table 1: Simulations discussed in this paper.
Name Volume Number of Particles Particle Mass Force Softening Smoothing Length Cross-section

LBox [h−1 Mpc] Np mp [h−1 M"] ε [h−1 kpc] hsi [h−1 kpc] σ/m [ cm2/g]

CDM-50 50 5123 6.88× 107 1.0 − 0
CDM-25 25 5123 8.59× 106 0.4 − 0
CDM-Z11 (3Rvir)* 2.5× 106* 1.07× 106* 0.3 − 0
CDM-Z12 (3Rvir)* 5.6× 107* 1.34× 105* 0.1 − 0

SIDM0.1-50 50 5123 6.88× 107 1.0 2.8 ε 0.1
SIDM0.1-25 25 5123 8.59× 106 0.4 2.8 ε 0.1
SIDM0.1-Z11 (3Rvir)* 2.5× 106* 1.07× 106* 0.3 2.8 ε 0.1
SIDM0.1-Z12 (3Rvir)* 5.6× 107* 1.34× 105* 0.1 1.4 ε 0.1

SIDM1-50 50 5123 6.88× 107 1.0 2.8 ε 1
SIDM1-25 25 5123 8.59× 106 0.4 2.8 ε 1
SIDM1-Z11 (3Rvir)* 2.5× 106* 1.07× 106* 0.3 2.8 ε 1
SIDM1-Z12 (3Rvir)* 5.6× 107* 1.34× 105* 0.1 1.4 ε 1

*Note: The Z11 and Z12 runs are zoom simulations with multiple particle species concentrating on halos of massMvir = 5× 1011 M" and 1.0× 1012

M" , respectively (no h). The volumes listed refer to the number of virial radii used to find the Lagrangian volumes associated with the zoom. The particle
properties listed are for the highest resolution particles only.

ing rate and kinematics are correctly followed in the code, and to
determine the optimum value of the SIDM softening kernel length
hsi. The simplest and cleanest scenario for testing our implemen-
tation consists of a uniform sphere of particles moving through a
uniform field of stationary background particles. The coordinate
system is defined such as the sphere is moving along the positive
z-direction with constant velocity vs. The particles forming the
sphere and the particles forming the background field are tagged
as different types within the code and here we will refer to them
simply as sphere (s) and background (bg) particles respectively.
We only allow scatterings involving two different types of particles
(i.e. sphere-background interactions only) and turn off gravitational
forces among all of the particles. Furthermore all particles have the
same massmp.

The expected number of interactions for this case is given by

Nexp(t) =
∑

i∈s,j∈bg

Pij = Ns(σ/m)ρbgvs t (10)

whereNs is the total number of Sphere particles, ρbg is the density
of the background field and t is the elapsed time from the begin-
ing of the simulation. From this experiment we have found that the
number of interactions computed by the code depends on the self-
interaction smoothing length hsi (see Figure 1), which is fixed to
be the same for all particles in this test. The number of interac-
tions converges to the expected value given by Equation (10) as hsi

becomes comparable to the background inter-particle separation,
specifically when hsi(ρbg/mp)

1/3 ! 0.2. For hsi(ρbg/mp)
1/3 !

0.5 the accuracy of the algorithm does not improve by much and
the time of the calculations increases rapidly, ∝ h3

si. Apart from
the expense, using larger values of hsi would lead to increasingly
non-local interactions among particles, which is inconsistent with
the model under consideration.

We also check the kinematics of the scatters in this test simula-
tion and describe the results in Appendix B. The resulting kinemat-
ics and number of interactions from our test simulation agrees well
with the expectations from the theory as long as hsi(ρbg/mp)

1/3 !
0.2.

4 OVERVIEW OF COSMOLOGICAL SIMULATIONS

We initialize our cosmological simulations using the Multi-Scale
Initial Conditions (MUSIC) code of Hahn & Abel (2011). We have
a total of four initial condition sets, each run with both CDM
and SIDM. The first two are cubic volumes of 25h−1 Mpc and
50h−1 Mpc on a side, each with 5123 particles. As discussed be-
low, these simulations allow us to resolve the structure of a statisti-
cal sample of group (∼ 1013 M") and cluster (∼ 1014 M") halos.

The second two initial conditions concentrate computational
power on zoom regions (Katz & White 1993) drawn from the
50h−1 Mpc box, specifically aimed at exploring the density struc-
ture of two smaller halos, one with virial mass 2 Mvir = 7.1 ×
1011h−1 M" = 1 × 1012 M" (Z12) and one withMvir = 3.5 ×
1011h−1 M" = 5 × 1011 M" (Z11). The Z12 run in particular is
fairly high resolution, with more than five million particles in the
virial radius. Table 1 summarizes the simulation parameters. The
cosmology used is based on WMAP7 results for a ΛCDM Uni-
verse: h = 0.71, Ωm = 0.266, ΩΛ = 0.734, Ωb = 0.0449,
ns = 0.963, σ8 = 0.801 (Komatsu et al. 2011).

Each of our four initial conditions has been evolved from red-
shift z = 250 to redshift z = 0 with collisionless dark matter
(labeled CDM) and with two types of self-interacting dark mat-
ter: one with σ/m = 1 cm2/g (labeled SIDM1) and another
with σ/m = 0.1 cm2/g (labeled SIDM0.1). We can use the
same initial conditions for CDM and SIDM because at high red-
shift the low densities and low relative velocities of the dark mat-
ter make self-interactions insignificant. Table 2 list all the simu-
lations used for this study and detail their force, mass, and self-
interaction resolution. In addition to the simulations listed in the
table, we also ran the cosmological boxes with SIDM cross sec-
tions σ/m = 0.03 cm2/g.We do not present results from these low
cross section runs here because no core density differences were re-
solved within the numerical convergence radii of our simulations.

As shown in §3 the self-interaction smoothing length hsi must
be larger than 20% the inter-particle separation in order to achieve
convergence on the interaction rate. All the work for this paper was

2 We define Mvir as Mvir = 4
3πρb∆vir(z)r3vir, and rvir as ρ̃(rvir) =

∆vir(z)ρb. Where ρ̃(rvir) denotes the overdensity within rvir, ρb is the
background density and ∆vir the virial overdensity.
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Figure 9. Cumulative subhalo abundance as a function of maximum sub-
halo circular velocity. The top panel shows the raw measurements from the
simulations, while in the bottom panel, we have applied the correction of
equation (10) to compensate approximately for the impact of the gravita-
tional softening on Vmax. We show results for five simulations of the Aq-A
halo carried out with differing mass resolution. The dashed line is the fitting
function given for their own simulations by Reed et al. (2005), which also
accurately matches the result for the ‘Via Lactea I’ simulation (Diemand
et al. 2007a). This is clearly inconsistent with our own data.

showing that we are really seeing the same subhaloes, and that
they are reproduced with the same maximum circular velocity in
all the simulations. This suggests that we are also achieving good
convergence for the internal structure of individual subhaloes, an
issue that we will investigate further below.

However, it is worth noting that the individual measurements
for the velocity functions peel away from their higher resolution
counterparts comparatively early at low velocities, which suggests
worse convergence than found for the subhalo mass functions at
the low-mass end. This behaviour can be understood as an effect
of the gravitational softening length ε, which lowers the maximum
circular velocities of subhaloes for which rmax is not much larger
than ε. To estimate the strength of this effect, we can imagine that
the gravitational softening for an existing subhalo is adiabatically

lowered from ε to zero. The angular momentum of individual par-
ticle orbits is then an adiabatic invariant. Assuming for simplicity
that all particles are on circular orbits, and that the gravitational
softening can be approximated as a Plummer force with softening
length ε, the expected change of the maximum circular velocity is
then

V ′
max = Vmax [1 + (ε/rmax)2]1/2. (10)

In the lower panel of Fig. 9, we plot the cumulative velocity func-
tions for these corrected maximum circular velocities. Clearly, the
measurements line up more tightly down to lower Vmax, demonstrat-
ing explicitly that the convergence in the number of objects counted
as a function of (corrected) circular velocity is in principle as good
as that counted as a function of mass. Note that a similar correction
can also be applied to the measured rmax values. However, for the
remainder of this paper, we focus on the raw measurements from the
simulations without applying a gravitational softening correction.

The dashed line in Fig. 9 shows the fit which Reed et al.
(2005) quote for the subhalo abundance as a function of max-
imum circular velocity in their own simulations, N(>Vmax) =
(1/48)(Vmax,sub/Vmax,host)−3. Diemand et al. (2007a) found this for-
mula to fit the results from their own Via Lactea I simulation very
well. Fig. 9 thus confirms the indication from subhalo mass fractions
that our simulations show substantially more substructure than re-
ported for Via Lactea I. This is particularly evident at lower subhalo
masses which are unaffected by the small number effects which
cause scatter in the abundance of massive subhaloes. With the help
of J. Diemand and his collaborators, we have checked that this abun-
dance difference is not a result of the different subhalo detection
algorithms used in our two projects.

We do not think that this discrepancy can be explained by halo-to-
halo scatter since it is much larger than the variation in substructure
abundance among our own sample of haloes. This is demonstrated
in Fig. 10, which shows the cumulative subhalo abundance dis-
tributions within r50 as a function of maximum subhalo circular
velocity for all our resolution level 2 haloes. We plot subhalo count

Figure 10. Cumulative subhalo abundance as a function of maximum sub-
halo circular velocity in units of the circular velocity of the main halo at
r50. We show results for all six of our haloes at resolution level 2, and in
addition we include our highest resolution result for the Aq-A-1 run. For
comparison, we overplot fitting functions for the Via Lactea I and Via Lactea
II simulations (Diemand et al. 2007a, 2008), appropriately rescaled from a
normalization to Vmax,host to one by V50,host.
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